Как доказать параллельность прямых

Признаки параллельности двух прямых

Как доказать параллельность прямых

Рассмотрим две прямые и , которые пересекает в двух точках третья прямая (Рис.1). Прямая называется секущей по отношению к прямым и .

При пересечении прямых и секущей образуется восемь углов, которые обозначены цифрами на Рис.2

Некоторые пары из этих углов имеют специальные названия:

накрест лежащие углы: 3 и 5, 4 и 6;

односторонние углы:4 и 5, 3 и 6;

соответственные углы:1 и 5, 4 и 8, 2 и 6, 3 и 7.

1. Теорема

Если при пересечении двух прямых секущейнакрест лежащие углы равны, то прямые параллельны.

Дано: прямые и , АВ – секущая, 1 и 2 – накрест лежащие, 1 = 2 (Рис.3).

Доказать: .

Доказательство:

1 случай

Предположим, что 1 = 2 = 900, т.е. эти углы прямые, получим АВ и АВ (Рис.4), следовательно, (т.к. две прямые перпендикулярные к третьей прямой не пересекаются, т.е. параллельны).

2 случай

Предположим, что 1 и2 – не прямые. Из середины О отрезка АВ проведем перпендикуляр ОН к прямой и продолжим его до пересечения с прямой , точку пересечения ОН с прямой обозначим Н1 (Рис. 5).

Получим ОНА = ОН1В по 2 признаку равенства треугольников (углы3 и 4 вертикальные, т.к.

получены при пересечении двух прямых АВ и НН1, а вертикальные углы равны друг другу, т.е. 3 = 4, АО = ОВ, т.к.

О – середина АВ, 1 = 2 по условию), следовательно, 5 =6, значит, 6 – прямой, также как и 5 (т.к по построению ОН ).

Получаем, НН1 и НН1, значит  (т.к. две прямые перпендикулярные к третьей прямой не пересекаются, т.е. параллельны). Что и требовалось доказать.

2. Теорема

Если при пересечении двух прямых секущейсоответственные углы равны, то прямые параллельны.

Дано: прямые и , АВ – секущая, 1 и 2 – соответственные, 1 = 2 (Рис.6).

Доказать: .

Доказательство:

По условию 1 = 2 и 2 = 3, т.к.они вертикальные, откуда 1 = 3, при этом углы 1 и 3 накрест лежащие, следовательно,  (см. теорему 1). Что и требовалось доказать.

3. Теорема

Если при пересечении двух прямых секущейсумма односторонних углов равна 1800, то прямые параллельны.

Дано: прямые и , АВ – секущая, 1 и 2 – односторонние, 1 + 2 = 1800 (Рис.7).

Доказать: .

Доказательство:

Углы 3 и 2 – смежные, значит по свойству смежных углов 3 + 2 = 1800, откуда 3 = 1800 – 2, при этом 1 + 2 = 1800, откуда 1 = 1800 – 2, тогда 1 = 3, а углы 1 и 3 накрест лежащие, следовательно, (см. теорему 1). Что и требовалось доказать.

Поделись с друзьями в социальных сетях:

Советуем посмотреть:

Параллельные прямые

Практические способы построения параллельных прямых

Аксиомы геометрии

Аксиома параллельных прямых

Теорема о накрест лежащих углах

Теорема о соответственных углах

Теорема об односторонних углах

Теорема об углах с соответственно параллельными сторонами

Теорема об углах с соответственно перпендикулярными сторонами

Параллельные прямые

Правило встречается в следующих упражнениях:

7 класс

Задание 202, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 2, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 233, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 297, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 589, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 590, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 795, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 900, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1181, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 1182, Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

© budu5.com, 2020

Пользовательское соглашение

Copyright

Нашли ошибку?

Связаться с нами

Источник: https://budu5.com/manual/chapter/3387

Параллельные прямые, признаки и условия параллельности прямых, две прямые параллельны если

Как доказать параллельность прямых

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Параллельные прямые: основные сведения

Определение 1

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Определение 2

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Чтобы обозначить параллельность прямых, общепринято использовать символ ∥. Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b. Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b, или прямая b параллельна прямой а.

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Аксиома

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Теорема 1

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10-11 классов).

Параллельность прямых: признаки и условия параллельности

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Определение 3

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Теорема 2

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Доказательство указанных условий присутствует в программе геометрии за 7-9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

Теорема 3

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

Теорема 4

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

Теорема 5

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

Теорема 6

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Проиллюстрируем:

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е.

, чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д.

Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Теорема 7

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a→=(ax, ay) и b→=(bx, by) являются направляющими векторами прямых a и b;

и nb→=(nbx, nby) являются нормальными векторами прямых a и b, то указанное выше необходимое и достаточное условие запишем так: a→=t·b→⇔ax=t·bxay=t·by или na→=t·nb→⇔nax=t·nbxnay=t·nby или a→, nb→=0⇔ax·nbx+ay·nby=0, где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A1x+B1y+C1=0; прямая b  – A2x+B2y+C2=0. Тогда нормальные векторы заданных прямых будут иметь координаты (А1, В1) и (А2, В2) соответственно. Условие параллельности запишем так:

A1=t·A2B1=t·B2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y=k1x+b1. Прямая b – y=k2x+b2. Тогда нормальные векторы заданных прямых будут иметь координаты (k1, -1) и (k2, -1) соответственно, а условие параллельности запишем так:

k1=t·k2-1=t·(-1)⇔k1=t·k2t=1⇔k1=k2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны.

И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x-x1ax=y-y1ay и x-x2bx=y-y2by или параметрическими уравнениями прямой на плоскости: x=x1+λ·axy=y1+λ·ay и x=x2+λ·bxy=y2+λ·by.

Тогда направляющие векторы заданных прямых будут: ax, ay и bx, by соответственно, а условие параллельности запишем так:

ax=t·bxay=t·by

Разберем примеры.

Пример 1

Заданы две прямые: 2x-3y+1=0 и x12+y5=1. Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x12+y5=1⇔2x+15y-1=0

Мы видим, что na→=(2, -3) – нормальный вектор прямой 2x-3y+1=0, а nb→=2, 15- нормальный вектор прямой x12+y5=1.

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t, при котором будет верно равенство:

2=t·2-3=t·15⇔t=1-3=t·15⇔t=1-3=15

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Пример 2

Заданы прямые y=2x+1и x1=y-42. Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x1=y-42 к уравнению прямой с угловым коэффициентом:

x1=y-42⇔1·(y-4)=2x⇔y=2x+4

Мы видим, что уравнения прямых y = 2x + 1 и y = 2x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2x + 1, например, (0, 1), координаты этой точки не отвечают уравнению прямой x1=y-42, а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2x + 1 это вектор na→=(2, -1), а направляющий вектором второй заданной прямой является b→=(1, 2). Скалярное произведение этих векторов равно нулю:

na→, b→=2·1+(-1)·2=0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Теорема 8

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности.

Иначе говоря, если a→=(ax, ay, az) и b→=(bx, by, bz)являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t, чтобы выполнялось равенство:

a→=t·b→⇔ax=t·bxay=t·byaz=t·bz

Пример 3

Заданы прямые x1=y-20=z+1-3 и x=2+2λy=1z=-3-6λ. Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a→ и b→ заданных прямых имеют координаты: (1, 0, -3) и (2, 0, -6).

Так как:

1=t·20=t·0-3=t·-6⇔t=12, то a→=12·b→.

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Источник: https://Zaochnik.com/spravochnik/matematika/prjamaja-ploskost/parallelnye-prjamye-priznaki-i-uslovija-parallelno/

Как доказать параллельность прямых

Как доказать параллельность прямых

17.04.2018

Две прямые лежащие на одной плоскости либо имеют только одну общую точку, либо не имеют ни одной общей точки.

В первом случае говорят, что прямые пересекаются, во втором случае — прямые не пересекаются.

Две прямые (a) и (b) на плоскости, которые не пересекаются, называются и обозначаются.

Обрати внимание!

Если рассмотреть прямые, которые не лежат в одной плоскости, то возможна ситуация, что прямые не пересекаются, но они и не параллельны.

Один из признаков параллельности прямых в плоскости гласит:

1. Признак. Если две прямые на плоскости перпендикулярные одной и той же прямой, то они параллельны.

Этот признак легко доказать, если вспомнить, что к прямой в плоскости с любой точки можно провести только один перпендикуляр.

Допустим, что прямые, перпендикулярные одной и той же прямой, не параллельны, то есть имеют общую точку.

Получается противоречие — с одной точки (H) к прямой (c) проведены два перпендикуляра. Такое невозможно, поэтому две прямые на плоскости перпендикулярные одной и той же прямой, параллельны.

Для рассмотрения других признаков надо ознакомиться с некоторыми видами углов:

1) Вспомним, что нам известны названия и свойства углов, которые образуют две пересекающиеся прямые

Вертикальные углы равны:

Сумма смежных углов:

2) Если две прямые пересекает третья прямая, то углы называются так:

Накрест лежащие углы

Соответственные углы

Односторонние углы

Эти углы помогут определить параллельность прямых (a) и (b). Итак, другой признак параллельности прямых в плоскости гласит:

2. Признак. Если при пересечении двух прямых третьей секущей:

накрест лежащие углы равны, или

соответственные углы равны, или

сумма односторонних углов равна (180°), то прямые параллельны.

Докажем этот признак.

С начала докажем, если прямые (a) и (b) пересекает прямая (c) и углы равны, то прямые (a) и (b) параллельны.

Например, если , то.

1) Отметим точки (C) и (D), в которых прямые (a) и (b) пересекает прямая (c). Через серединную точку (K) этого отрезка проведем перпендикуляр (AB) к прямой (a) .

2) (=) как вертикальные углы, (=)(=), (CK = KD) — значит (=) по признаку о стороне и двум прилежащим к ней углам.

3) Очевидно, если  прямоугольный, то и  прямоугольный, и (AB) перпендикулярен и к прямой (b).

4) Согласно первому доказанному признаку прямые, перпендикулярные одной и той же прямой, параллельны.

5) В случае, когда имеем в виду, что вертикальные углы равны и доказываем как в пунктах 1) — 4).

6) В случае, , имеем в виду, что сумма смежных углов тоже равна (180°) и используем в доказательстве пункты 1) — 4).
3. Признак параллельных прямых действует и как .

При пересечении двух параллельных прямых третьей секущей:

— накрест лежащие углы равны,

— соответственные углы равны,

— сумма односторонних углов равна (180°).

О других свойствах параллельных прямых в следующем пункте теории.

Источник:

Признаки параллельности прямых

Параллельность двух прямых можно доказать на основе теоремы, согласно которой, два проведенных перпендикуляра по отношению к одной прямой, будут параллельны. Существуют определенные признаки параллельности прямых – всего их три, и все их мы рассмотрим более конкретно.

Первый признак параллельности

Прямые параллельны, если при пересечении их третьей прямой, образуемые внутренние углы, лежащие накрест, будут равны.

Допустим, при пересечении прямых АВ и СD прямой линией ЕF, были образованы углы /1 и /2. Они равны, так как прямая линия ЕF проходит под одним уклоном по отношению к двум остальным прямым. В местах пересечения линий, ставим точки Ки L – у нас получился отрезок секущей ЕF. Находим его середину и ставим точку О (черт. 189).

На прямую АВ опускаем перпендикуляр из точки О. Назовем его ОМ. Продолжаем перпендикуляр до тех пор, пока он не пересечется с прямой СD.

В результате, первоначальная прямая АВ строго перпендикулярна МN, а это значит, что и СD_|_МN, но это утверждение требует доказательства. В результате проведения перпендикуляра и линии пересечения, у нас образовалось два треугольника.

Один из них – МОЕ, второй – NОК. Рассмотрим их более подробно. признаки параллельности прямых 7 класс

Данные треугольники равны, поскольку, в соответствии с условиями теоремы, /1 =/2, а в соответствии с построением треугольников, сторона ОK = стороне ОL. Угол МОL =/NОК, поскольку это вертикальные углы.

Из этого следует, что сторона и два угла, прилежащие к ней одного из треугольников соответственно равны стороне и двум углам, прилежащим к ней, другого из треугольников.

Таким образом, треугольник МОL =треугольникуNОК, а значит, и угол LМО = углу КNО, но нам известно, что/LМО прямой, значит, и соответствующий ему, угол КNО тоже прямой. То есть, нам удалось доказать, что к прямой МN, как прямая АВ, так и прямая СD перпендикулярны.

То есть, АВ и СD по отношению друг к другу являются параллельными. Это нам и требовалось доказать. Рассмотрим остальные признаки параллельности прямых (7 класс), которые отличаются от первого признака по способу доказательства.

Второй признак параллельности

Согласно второму признаку параллельности прямых, нам необходимо доказать, что углы, полученные в процессе пересечения параллельных прямых АВ и СD прямой ЕF, будут равны. Таким образом, признаки параллельности двух прямых, как первый, так и второй, основывается на равности углов, получаемых при пересечении их третьей линией.

Допускаем, что /3 = /2, а угол 1 = /3, поскольку он вертикален ему. Таким образом, и /2 будет равен углу1, однако следует учитывать, что как угол 1, так и угол 2 являются внутренними, накрест лежащими углами.

Следовательно, нам остается применить свои знания, а именно то, что два отрезка будут параллельными, если при их пересечении третьей прямой образованные, накрест лежащие углы будут равными. Таким образом, мы выяснили, что АВ || СD.

Нам удалось доказать, что при условии параллельности двух перпендикуляров к одной прямой, согласно соответствующей теореме, признак параллельности прямых очевиден.

Третий признак параллельности

Существует еще и третий признак параллельности, который доказывается посредством суммы односторонних внутренних углов. Такое доказательство признака параллельности прямых позволяет сделать вывод, что две прямые будут параллельны, если при пересечении их третье прямой, сумма полученных односторонних внутренних углов, будет равна 2d. См. рисунок 192.

Источник:

Признаки параллельности прямых . урок. Геометрия 7 Класс

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Основы геометрии»

Две прямые на плоскости называются параллельными, если они не пересекаются. Обозначается это так:.

Рис. 1

Отрезки AB и CD, лежащие на параллельных прямых, называются параллельными.

Лучи, лежащие на параллельных прямых, также называются параллельными.

Задумаемся, неужели а и b нигде не пересекутся? И существуют ли такие прямые? Ведь а и b не ограничены. И в соседней комнате не пересекутся? И на луне?

Оказывается, такие прямые существуют.

Мы доказывали, что перпендикулярная прямая а к прямой с и перпендикулярная прямая b к прямой с нигде не пересекаются (Рис. 2).

Рис. 2

То есть две перпендикулярные прямые к одной и той же третьей прямой нигде не пересекутся. Оказывается, для этих прямых есть термин.

.

Рассмотрим важную геометрическую конструкцию, в которой две прямые а и рассекаются прямой с (Рис. 3).

Рис. 3

с – секущая а и b. Это означает, что она пересекает и а, и b.

Возникает много углов (1, 2, 3, 4, 5, 6, 7, 8).

Эти углы называются:

накрест лежащие углы:,;

односторонние углы:, ∠3 и ∠6;

Источник: https://soveti-masterov.com/instruktsii/kak-dokazat-parallelnost-pryamyh.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.