Как найти диаметр окружности

Как определить диаметр трубы – варианты замеров окружности

Как найти диаметр окружности

В процессе выполнения строительных работ в быту или на производстве может появиться необходимость в измерении диаметра трубы, которая уже вмонтирована в систему водоснабжения или канализации. Также знать данный параметр необходимо на стадии проектирования прокладки инженерных коммуникаций.

Отсюда возникает необходимость разобраться с тем, как определить диаметр трубы. Выбор конкретного способа выполнения измерений зависит от размеров объекта и от того, доступно ли расположение трубопровода.

Определение диаметра в бытовых условиях

До того, как замерить диаметр трубы, нужно приготовить следующие инструменты и устройства:

  • рулетка или стандартная линейка;
  • штангенциркуль;
  • фотоаппарат – его задействуют при необходимости.

Если трубопровод доступен для проведения замеров, а торцы труб можно без проблем измерить, тогда достаточно иметь в распоряжении обычную линейку или рулетку. При этом следует учитывать, что используют такой метод, когда к точности предъявляются минимальные требования.

В этом случае выполняют измерение диаметра труб в такой последовательности:

  1. Подготовленные инструменты прикладывают к месту, где находится самая широкая часть торца изделия.
  2. Потом отсчитывают количество делений, соответствующих размеру диаметра.

Данный способ позволяет узнавать параметры трубопровода с точностью, составляющую несколько миллиметров. Иногда требуется определить и площадь трубопровода, что тоже весьма просто сделать.

Для измерения внешнего диаметра труб с небольшим сечением можно задействовать такой инструмент как штангенциркуль:

  1. Раздвигают его ножки и прикладывают к торцу изделия.
  2. Затем их нужно сдвинуть так, чтобы они оказались плотно прижатыми к наружной стороне стенок трубы.
  3. Ориентируясь на шкалу значений приспособления, узнают требуемый параметр.

Этот метод определения диаметра трубы дает довольно точные результаты, до десятых миллиметра.

Когда трубопровод недоступен для обмера и является частью уже функционирующей конструкции водоснабжения или газовой магистрали, поступают следующим образом: штангенциркуль прикладывают к трубе, к ее боковой поверхности. Таким способом обмеряют изделие в тех случаях, если у измерительного приспособления длина ножек превышает половину диаметра трубной продукции.

Нередко в бытовых условиях возникает необходимость узнать, как измерять диаметр трубы, имеющей большое сечение. Существует простой вариант, как это сделать: достаточно знать длину окружности изделия и константу π, равную 3,14. Не намного сложнее узнать объем трубы, выполнив простые расчеты.

Сначала при помощи рулетки или куска шнура обмеряют трубу в обхвате. Потом подставляют известные величины в формулу d=l:π, где:

d – определяемый диаметр;

l – длина измеренной окружности.

К примеру, обхват трубы составляет 62,8 сантиметра, тогда d = 62,8:3,14 =20 сантиметров или 200 миллиметров.

Бывают ситуации, когда проложенный трубопровод полностью недоступен. Тогда можно применить метод копирования. Суть его заключается в том, что к трубе прикладывают измерительный инструмент или небольшой по размеру предмет, у которого известны параметры.

К примеру, это может быть коробок спичек, длина которого равна 5 сантиметрам. Потом этот участок трубопровода фотографируют. Последующие вычисления выполняют по фотографии. На снимке измеряют видимую толщину изделия в миллиметрах. Потом нужно перевести все полученные величины в реальные параметры трубы с учетом масштаба произведенной фотосъемки.

Измерение диаметров в производственных условиях

На больших строящихся объектах трубы до начала проведения монтажа в обязательном порядке подвергают входному контролю. Прежде всего, проверяют сертификаты и маркировку, нанесенную на трубную продукцию.

Документация должна содержать определенную информацию, касающуюся труб:

  • номинальные размеры;
  • номер и дата ТУ;
  • марка металла или вид пластика;
  • номер товарной партии;
  • итоги проведенных испытаний;
  • хим. анализ выплавки;
  • тип термической обработки;
  • результаты рентгеновской дефектоскопии.

Кроме этого, на поверхности всех изделий на расстоянии примерно 50 сантиметров от одного из торцов всегда наносят маркировку, содержащую:

  • наименование производителя;
  • номер плавки;
  • номер изделия и его номинальные параметры;
  • дату изготовления;
  • эквивалент углерода.

Длины труб в производственных условиях определяют мерной проволокой. Также не возникает сложностей с тем, как измерить диаметр трубы рулеткой.

Для изделий первого класса допустимой величиной отклонения в одну или другую сторону от заявленной длины являются 15 миллиметров. Для второго класса –100 миллиметров.

У труб наружный диаметр сверяют, пользуясь формулой d = l:π-2Δр-0,2 мм, где кроме вышеописанных значений:

Δр – толщина материала рулетки;

0,2 миллиметра– припуск на прилегание инструмента к поверхности.

Допускается отклонение величины внешнего диаметра от заявленной производителем:

  • для продукции с сечением не более 200 миллиметров–1,5 миллиметра;
  • для больших труб – 0,7%.

В последнем случае для проверки трубной продукции пользуются ультразвуковыми измерительными приборами. Для определения толщины стенок задействуют штангенциркули, у которых деление на шкале соответствует 0,01 миллиметра. Минусовой допуск не должен превышать 5% номинальной толщины. При этом кривизна не может быть более 1,5 миллиметра на 1 погонный метр.

Из вышеописанной информации ясно, что несложно разобраться с тем, как определить диаметр трубы по длине окружности или при помощи несложных измерительных инструментов. 

Источник: https://trubaspec.com/vidy-trub/kak-opredelit-diametr-truby-varianty-zamerov-okruzhnosti.html

Как найти длину окружности зная радиус и диаметр: формула, как найти длину круга и разницу между величинами

Как найти диаметр окружности

Очень часто при решении школьных заданий по математике или физике возникает вопрос — как найти длину окружности, зная диаметр? На самом деле никаких сложностей в решении этой проблемы нет, нужно только чётко представлять себе, какие формулы, понятия и определения требуются для этого….

Основные понятия и определения

  1. Радиус — это линия, соединяющая центр окружности и её произвольную точку. Он обозначается латинской буквой r.
  2. Хордой называется линия, соединяющая две произвольные точки лежащие на окружности.
  3. Диаметр — это линия, соединяющая два пункта окружности и проходящая через её центр.

    Он обозначается латинской буквой d.

  4. Окружность — это линия, состоящая из всех точек, находящихся на равном расстоянии от одной избранной точки, именуемой её центром. Её длину будем обозначать латинской буквой l.

Площадь круга — это вся территория, заключённая внутри окружности.

Она измеряется в квадратных единицах и обозначается латинской буквой s.

Пользуясь нашими определениями, приходим к выводу, что диаметр круга равен его самой большой хорде.

Внимание! Из определения, что такое радиус круга можно узнать, что такое диаметр круга. Это два радиуса отложенные в противоположных направлениях! Диаметр окружности.

Нахождение длины окружности и её площади

Если нам дан радиус окружности, то диаметр окружности описывает формула d = 2*r. Таким образом, для ответа на вопрос, как найти диаметр круга, зная его радиус, достаточно последний умножить на два.

Формула длины окружности, выраженная через её радиус, имеет вид l = 2*П*r.

Внимание! Латинской буквой П (Пи) обозначается отношение длины окружности к её диаметру, и это есть непериодическая десятичная дробь. В школьной математике она считается заранее известной табличной величиной, равной 3,14!

Теперь перепишем предыдущую формулу, чтобы найти длину окружности через её диаметр, помня, в чём состоит его разница по отношению к радиусу. Получится: l = 2*П*r = 2*r*П = П*d.

Из курса математики известно, что формула, описывающая площадь окружности, имеет вид: s = П*r2.

Теперь перепишем предыдущую формулу, чтобы найти площадь окружности через её диаметр. Получим,

s = П*r2 = П*d2/4.

Одним из самых сложных заданий в данной теме является определение площади круга через длину окружности и наоборот. Воспользуемся тем, что s = П*r2 и l = 2*П*r. Отсюда получим r = l/(2*П). Подставим полученное выражение для радиуса в формулу для площади, получится: s = l2/(4П). Абсолютно аналогичным способом определяется и длина окружности через площадь круга.

Определение длины радиуса и диаметра

Важно! Прежде всего узнаем, как измерить диаметр. Это очень просто проводим любой радиус, продлеваем его в противоположную сторону до пересечения с дугой. Циркулем отмеряем полученное расстояние и с помощью любого метрического инструмента узнаем искомое!

Ответим на вопрос, как узнать диаметр окружности, зная её длину. Для этого выразим его из формулы l = П*d. Получим d = l/П.

Мы уже знаем как из длины окружности можно найти её диаметр, точно также найдём и радиус.

l = 2*П*r, отсюда r = l/2*П. Вообще, чтобы узнать радиус, его нужно выражать через диаметр и наоборот.

Пусть теперь требуется определить диаметр, зная площадь окружности. Используем то, что s = П*d2/4. Выразим отсюда d. Получится d2 = 4*s/П. Для определения самого диаметра потребуется извлечь корень квадратный из правой части. Получится d = 2*sqrt(s/П).

! Первый признак равенства треугольников: доказательство

Решение типовых заданий

  1. Узнаем, как найти диаметр, если дана длина окружности. Пусть она равняется 778,72 километра. Требуется найти d. d = 778,72/3,14 = 248 километров. Вспомним, что такое диаметр и сразу определим радиус, для этого определённое выше значение d разделим пополам. Получится r = 248/2 = 124 километра.

  2. Рассмотрим, как найти длину данной окружности, зная её радиус. Пусть r имеет значение 8 дм 7 см. Переведём это все в сантиметры, тогда r будет равняться 87 сантиметров. Воспользуемся формулой, как найти неизвестную длину круга . Тогда наше искомое будет равняться l = 2*3,14*87 = 546,36 см.

    Переведём наше полученное значение в целые числа метрических величин l = 546,36 см = 5 м 4 дм 6 см 3,6 мм.

  3. Пусть нам требуется определить площадь данной окружности по формуле через её известный диаметр. Пусть d = 815 метров. Вспомним формулу, как найти площадь окружности. Подставим сюда данные нам значения, получим s = 3,14*8152/4 = 521416,625 кв. м.

  4. Теперь узнаем, как найти площадь круга, зная длину его радиуса. Пусть радиус равняется 38 см. Используем известную нам формулу. Подставим сюда данное нам по условию значение. Получится следующее: s = 3,14*382 = 4534,16 кв. см.
  5. Последним заданием определим площадь круга по известной длине окружности. Пусть l = 47 метров.

    s = 472/(4П) = 2209/12,56 = 175,87 кв. м.

! Что такое биссектриса треугольника: свойства, связанные с отношением сторон

Длина окружности

Окружность, диаметр, хорда геометрия 7 класс

Заключение

Исходя из приведённых выше рассуждений, можно прийти к выводу, что никаких сложностей в задачах, связанных с нахождением всевозможных характеристик окружности, нет. Достаточно хорошо выучить понятия и формулы, а также уметь производить арифметические действия, причём все выражения выводятся друг из друга.

! Чему равна и как найти площадь равностороннего треугольника

Источник: https://tvercult.ru/nauka/vyichislenie-radiusa-kak-nayti-dlinu-okruzhnosti-znaya-diametr

Как найти диаметр окружности

Как найти диаметр окружности

19.03.2018

> Наука > Математика > Длина окружности: формулы поиска по радиусу, равному половине диаметра

Окружность состоит из множества точек, которые находятся на равном расстоянии от центра. Это плоская геометрическая фигура, и найти ее длину не составит труда.

С окружностью и кругом человек сталкивается ежедневно независимо от того, в какой сфере он работает. Многие овощи и фрукты, устройства и механизмы, посуда и мебель имеют круглую форму.

Кругом называют то множество точек, которое находится в границах окружности. Поэтому длина фигуры равна периметру круга.

Характеристики фигуры

Кроме того, что описание понятия окружности достаточно простое, её характеристики также несложные для понимания. С их помощью можно вычислить её длину. Внутренняя часть окружности состоит из множества точек, среди которых две — А и В — можно увидеть под прямым углом. Этот отрезок называют диаметром, он состоит из двух радиусов.

В пределах окружности имеются точки Х такие, что не изменяется и не равняется единице отношение АХ/ВХ.

В окружности это условие обязательно соблюдается, в ином случае эта фигура не имеет форму круга.

На каждую точку, из которых состоит фигура, распространяется правило: сумма квадратов расстояний от этих точек до двух других всегда превышает половину длины отрезка между ними.

Основные термины окружности

Для того чтобы уметь находить длину фигуры, необходимо знать основные термины, касающиеся её. Основные параметры фигуры — это диаметр, радиус и хорда. Радиусом называют отрезок, соединяющий центр круга с любой точкой на её кривой. Величина хорды равна расстоянию между двумя точками на кривой фигуры. Диаметр — расстояние между точками, проходящее через центр фигуры.

Основные формулы для вычислений

Параметры используются в формулах вычислений величин окружности:

  • длину фигуры вычисляют умножением диаметра на число π и записывают таким образом: C = π*D.
  • Величина диаметра в два раза превышает длину радиуса. Иной способ вычисления радиуса — необходимо разделить длину круга на удвоенное π: R = C/(2* π) = D/2.
  • Диаметр рассчитывается с помощью радиуса или делением длины окружности на число π. Формула нахождения диаметра: D = C/π = 2*R.
  • Площадь круга, ограниченного окружностью, можно найти двумя способами: через радиус или диаметр. По формуле площадь равна четвёртой части произведения числа π и диаметра в квадрате или радиусу в квадрате, умноженному на π: S = π*R2 = π*D2/4.

Диаметр в формулах вычисления

В экономике и математике нередко появляется необходимость поиска длины окружности. Но и в повседневной жизни можно столкнуться с этой надобностью, к примеру, во время постройки забора вокруг бассейна круглой формы. Как рассчитать длину окружности по диаметру? В этом случае используют формулу C = π*D, где С — это искомая величина, D — диаметр.

Например, ширина бассейна равна 30 метрам, а столбики забора планируют поставить на расстоянии десяти метров от него. В этом случае формула расчёта диаметра: 30+10*2 = 50 метров. Искомая величина (в этом примере — длина забора): 3,14*50 = 157 метров. Если столбики забора будут стоять на расстоянии трёх метров друг от друга, то всего их понадобится 52.

Расчёты по радиусу

Как вычислить длину окружности по известному радиусу? Для этого используется формула C = 2*π*r, где С — длина, r — радиус. Радиус в круге меньше диаметра в два раза, и это правило может пригодиться в повседневной жизни. К примеру, в случае приготовления пирога в раздвижной форме.

Для того чтобы кулинарное изделие не испачкалось, необходимо использовать декоративную обёртку. А как вырезать бумажный круг подходящего размера?

Те, кто немного знаком с математикой, понимают, что в этом случае нужно умножить число π на удвоенный радиус используемой формы. Например, диаметр формы равен 20 сантиметрам, соответственно, её радиус составляет 10 сантиметров. По этим параметрам находится необходимый размер круга: 2*10*3, 14 = 62,8 сантиметра.

Подручные способы вычисления

Если найти длину окружности по формуле нет возможности, то стоит воспользоваться подручными методами расчёта этой величины:

  • При небольших размерах круглого предмета его длину можно найти с помощью верёвки, обёрнутой вокруг один раз.
  • Величину большого предмета измеряют так: на ровной плоскости раскладывают верёвку, и по ней прокатывают круг один раз.
  • Современные студенты и школьники для расчётов используют калькуляторы. В режиме онлайн по известным параметрам можно узнавать неизвестные величины.

Круглые предметы в истории человеческой жизни

Первое изделие круглой формы, которое изобрёл человек — это колесо. Первые конструкции представляли собой небольшие округлые бревна, насаженные на оси.

Затем появились колёса, сделанные из деревянных спиц и обода. Постепенно в изделие добавляли металлические детали для уменьшения износа.

Именно для того, чтобы узнать длину металлических полос для обивки колёса, учёные прошлых веков искали формулу расчёта этой величины.

Форму колеса имеет гончарный круг, большинство деталей в сложных механизмах, конструкциях водяных мельниц и прялок.

Нередко встречаются круглые предметы в строительстве — рамки круглых окон в романском архитектурном стиле, иллюминаторы в суднах.

Архитекторы, инженеры, учёные, механики и проектировщики ежедневно в сфере своей профессиональной деятельности сталкиваются с надобностью расчёта размеров окружности.

Источник:

Длина окружности

Окружностью называется ряд равноудалённых точек от одной точки, которая, в свою очередь, является центром этой окружности. Окружность имеет также свой радиус, равный расстоянию этих точек от центра.

Отношение длины, какой либо окружности к её диаметру, для всех окружностей одинаково. Это отношение есть число, являющееся математической константой, которое обозначается греческой буквой π.

Определение длины окружности

Произвести расчёт окружности можно по следующей формуле:

L = πD = 2πr

r – радиус окружности

D – диаметр окружности

L – длина окружности

π – 3.14

Задача:

Вычислить длину окружности, имеющей радиус 10 сантиметров.

Решение:

Формула для вычисления дины окружности имеет вид:

L = πD = 2πr

где L – длина окружности, π – 3,14, r – радиус окружности, D – диаметр окружности.

Таким образом, длина окружности, имеющей радиус 10 сантиметров равна:

L = 2 × 3,14 × 10 = 62,8 сантиметра

Окружность представляет собой геометрическую фигуру, являющуюся совокупностью всех точек на плоскости, удаленных от заданной точки, которая называется ее центром, на некоторое расстояние, не равное нулю и именуемое радиусом.

Определять ее длину с различной степенью точности ученые умели уже в глубокой древности: историки науки считают, что первая формула для вычисления длины окружности была составлена примерно в 1900 году до нашей эры в древнем Вавилоне.

С такими геометрическими фигурами, как окружности, мы сталкиваемся ежедневно и повсеместно. Именно ее форму имеет внешняя поверхность колес, которыми оснащаются различные транспортные средства.

Эта деталь, несмотря на свою внешнюю простоту и незатейливость, считаются одним из величайших изобретений человечества, причем интересно, что аборигены Австралии и американские индейцы вплоть до прихода европейцев совершенно не имели понятия о том, что это такое.

По всей вероятности, самые первые колеса представляли собой отрезки бревен, которые насаживались на ось. Постепенно конструкция колеса совершенствовалась, их конструкция становилась все более и более сложной, а для их изготовления требовалось использовать массу различных инструментов.

Сначала появились колеса, состоящие из деревянного обода и спиц, а затем, для того, чтобы уменьшить износ их внешней поверхности, ее стали обивать металлическими полосами.

Для того чтобы определить длины этих элементов, и требуется использовать формулу расчета длины окружности (хотя на практике, вероятнее всего, мастера это делали «на глаз» или просто опоясывая колесо полосой и отрезая требуемый ее участок).

Следует заметить, что колесо используется отнюдь не только в транспортных средствах. Например, его форму имеет гончарный круг, а также элементы шестеренок зубчатых передач, широко применяемых в технике.

Издавна колеса использовались в конструкциях водяных мельниц (самые древние из известных ученым сооружений такого рода строились в Месопотамии), а также прялок, применявшихся для изготовления нитей из шерсти животных и растительных волокон.

Окружности нередко можно встретить и в строительстве. Их форму имеют достаточно широко распространенные круглые окна, очень характерные для романского архитектурного стиля.

Изготовление этих конструкций – дело весьма непростое и требует высокого мастерства, а также наличия специального инструмента.

Одной из разновидностей круглых окон являются иллюминаторы, устанавливаемые в морских и воздушных судах.

Таким образом, решать задачу определения длины окружности часто приходится инженерам-конструкторам, разрабатывающим различные машины, механизмы и агрегаты, а также архитекторам и проектировщикам.

Поскольку число π, необходимое для этого, является бесконечным, то с абсолютной точностью определить этот параметр не представляется возможным, и поэтому при вычислениях учитывается та ее степень, которая в том или ином конкретном случае является необходимой и достаточной.

Источник:

Способы найти диаметр окружности — методы вычислений.

https://www..com/watch?v=Tkb0Iss5yRY

Окружность – это замкнутая линия, точки которой равноудалены от ее центра. Диаметр – это отрезок, который соединяет две наиболее удаленные друг от друга точки на окружности и проходит через ее центр, а также длина такого отрезка.

Для того чтобы найти диаметр круга, необходимо знать его размеры – длину окружности, радиус, или ее площадь. Если же данные параметры не известны, то диаметр можно найти с помощью дополнительного чертежа.

Источник: https://soveti-masterov.com/hitrosti/kak-najti-diametr-okruzhnosti.html

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.