Как найти площадь, зная периметр

Содержание

Как найти площадь зная периметр квадрата, прямоугольника, многоугольника, треугольника

Как найти площадь, зная периметр

Затеяв ремонт, необходимо в первую очередь иметь план действий и рассчитать свой бюджет. Только при грамотной планировке можно добиться качественной работы в короткие сроки. Если вы собираетесь сделать ремонт своего потолка, то необходимо сделать необходимые замеры.

Зная площадь потолка можно примерно рассчитать, сколько материалов нужно будет купить и сколько будет стоимость услуги мастеров, если собираетесь обратиться к ним. Но площадь прямоугольника – это еще не все. Иногда бывает так, что нужно знать периметр прямоугольника .

встает вопрос можно ли узнать периметр, зная при этом площадь? Рассмотрим этот вопрос повнимательнее, и постараемся найти периметр прямоугольника.

Данные необходимые для того чтобы найти периметр

Сумма всех сторон прямоугольника называется периметром – это еще мы уяснили из курса арифметики начальных классов. Как видно из условия необходимо знать длину сторон. Площадь же – результат умножения двух сторон, в этом случае так же необходимо знать длину сторон. И в первом и во втором случае обязательным условием является знание длин сторон А и В.

Как же через показатель площади найти у прямоугольника периметр? Тут может быть два варианта: первый, если наш прямоугольник с равными сторонами, то есть квадрат, а второй, если длина сторон разная.

При условии, что потолок квадратный то найти периметр очень просто. Зная формулу нахождения площади квадрата, можно выяснить найти длину всех сторон, ведь они у квадрата одинаковые.

  1. Площадь = длина стороны во второй степени. Чтобы найти длину стороны нам нужно переделать данную формулу следующим образом:
  2. Длина стороны =  корень квадратный от площади
  3. Так длина стороны при площади 4 квадратных метров, будет 2 метра, а при 16 квадратных метров 4 метра.
  4. Периметр = длина квадрата умноженная на 4. При длине стороны 2 метра, то периметр будет 8 метров. Тут все просто.

Довольно простой способ, который позволит посчитать периметр квадратного потолка. Квадратный потолок будет отличаться тем что, при большом показателе периметра будет относительно не большие площади. Однако квадратные потолки – это довольно редкий случай. Как правило, такие помещения не очень смотрятся, поэтому наиболее распространенные являются прямоугольные потолки.

Можно ли также найти периметр не квадратного прямоугольника?

Данный способ для прямоугольника с разными сторонами не подходит. Ведь вариантов разности сторон может быть до бесконечности много. И тут для определения периметра обязательным условием является знание хотя бы одной из сторон и площади.

Площадь = длина первой стороны умножается на длину второй стороны

Исходя из этой формулы, зная площадь найти две неизвестные стороны прямоугольника невозможно, но возможно выяснить длину одной стороны, если есть длина первой. Так если площадь прямоугольника 10 квадратных метров, а длина одной из сторон 2 метра, то можно посчитать

10 = 2 умножить на длину неизвестной стороны, следовательно, неизвестная сторона = 10 разделить на 2. Получаем ответ 5 метров.

Периметр = ( 5 + 2 ) * 2. Периметр такого прямоугольника будет 14 метров.

Таким образом, с подсчетом не возникнет проблем, если вы хорошо учили арифметику. Однако для того чтобы упростить себе жизнь, можно обратиться в фирмы по ремонту квартир. Мастера подобных организаций берут на себя весь процесс расчетов и монтажных работ, вам только необходимо будет подписать с ними соответствующие документы и все.

Использование подобных услуг – это очень простой способ решения нудной проблемы ремонта потолков. Вы получаете компетентную помощь от высококвалифицированной бригады мастеров, которые имеют большой опыт работы. А подписывая с ними контракт, вы страхуете себя от ненужных проблем, которые порою бывают из-за недопонимания.

Договоры о сотрудничестве содержат все нюансы работы, и выполняются в соответствии с законом.

При планировании бюджета на ремонт потолка, после проведенных расчетов необходимо закупить расходные материалы. Рекомендуется покупать немного больше требуемого объема материалов, так как бывают случаи с неожиданным результатом.

Так хорошо будет брать запас в 15 процентов – это оптимальный объем. Но еще более приемлемым будет заказать ремонт потолков под ключ, ведь в этом случае нет надобности беспокоиться о закупках.

Мастера сами предложат выбрать материалы для ремонта, после того как выбор был сделан они привезут и сделают ремонт. Как правило, у них налажена система логистики, поэтому с доставкой не возникает проблем.

Если вы цените свое время и нервы, рекомендуется обратиться к подобным компаниям по ремонту потолков под ключ. Вы получите качественный сервис в короткие сроки, и ваш потолок будет радовать вас как никогда прежде. В любом случае решение остается за вами!

Источник: https://opotolkax.com/montazh/otdelka-i-remont-potolka/kak-najti-perimetr-znaya-ploshhad.html

Периметр и площадь прямоугольника

Как найти площадь, зная периметр

Развернуть структуру обучения

структуру обучения

При решении, необходимо принять во внимание, что решить задачу о нахождении площади прямоугольника только из длины его сторон нельзя

В этом несложно убедиться. Пусть периметр прямоугольника будет равен 20 см. Это будет верно, если его стороны 1 и 9, 2 и 8, 3 и 7 см.

Все эти три прямоугольника будут иметь одинаковый периметр, равный двадцати сантиметрам. ( 1 + 9 ) * 2 = 20 точно также как и ( 2 + 8 ) * 2 = 20 см.

Как видно, мы можем подобрать бесконечное количество вариантов размеров сторон прямоугольника, периметр которого будет равен заданному значению.

Площадь прямоугольников с заданным периметром 20 см, но с различными сторонами будет различна. Для приведенного примера  – 9, 16 и 21 квадратных сантиметров соответственно.
S1 = 1 * 9 = 9 см2
S2 = 2 * 8 = 16 см2
S3= 3 * 7 = 21 см2
Как видим, вариантов площади фигуры при заданном периметре – бесконечное количество.

Замечание для любознательных. В случае с прямоугольником, у которого задан периметр, максимальную площадь будет иметь квадрат.

Таким образом, для того, чтобы вычислить площадь прямоугольника из его периметра, нужно обязательно знать либо соотношение его сторон, либо длину одной из них. Единственной фигурой, которая имеет однозначную зависимость своей площади от периметра, является круг. Только для круга и возможно решение.

В этом уроке:

  • Задача 1. Найти стороны прямоугольника из площади
  • Задача 2. Найти стороны прямоугольника из периметра
  • Задача 3. Найти площадь прямоугольника из пропорции его сторон
  • Задача 4. Изменение длины сторон при сохранении площади прямоугольника

Периметр прямоугольника равен 32 сантиметрам, а сумма площадей квадратов, построенных на каждой из его сторон – 260 квадратных сантиметров. Найдите стороны прямоугольника.
Решение. Обозначим стороны прямоугольника как x и y. Тогда периметр прямоугольника равен: 2(x+y)=32 Согласно условию задачи, сумма площадей квадратов построенных на каждой из его сторон (квадратов, соответственно, четыре) будет равна

2×2+2y2=260

Решаем полученную систему уравнений. Из первого уравнения выводим, что x+y=16 x=16-y Теперь выполняем подстановку во второе уравнение, заменяя x его эквивалентом.

2(16-y)2+2y2=260

2(256-32y+y2)+2y2=260
512-64y+4y2-260=0
4y2-64y+252=0 Решаем полученное квадратное уравнение. D=4096-16×252=64

x1=9

x2=7 Теперь примем во внимание, что исходя из того, что x+y=16 (см. выше) при x=9, то y=7 и наоборот, если x=7, то y=9

Ответ: Стороны прямоугольника равны 7 и 9 сантиметров

Периметр прямоугольника 26 см, а сумма площадей квадратов, построенных на двух его смежных сторонах, равна 89 кв. см. Найдите стороны прямоугольника.
Решение. Обозначим стороны прямоугольника как x и y.

Тогда периметр прямоугольника равен: 2(x+y)=26 Сумма площадей квадратов построенных на каждой из его сторон (квадратов, соответственно, два и это квадраты ширины и высоты, поскольку стороны смежные) будет равна

x2+y2=89

Решаем полученную систему уравнений. Из первого уравнения выводим, что x+y=13 y=13-y Теперь выполняем подстановку во второе уравнение, заменяя x его эквивалентом.

(13-y)2+y2=89

169-26y+y2+y2-89=0
2y2-26y+80=0 Решаем полученное квадратное уравнение. D=676-640=36

x1=5

x2=8 Теперь примем во внимание, что исходя из того, что x+y=13 (см. выше) при x=5, то y=8 и наоборот, если x=8, то y=5

Ответ: 5 и 8 см

Задача 3. Найти площадь прямоугольника из пропорции его сторон

Найти площадь прямоугольника если его периметр равен 26 см а стороны пропорциональны как 2 к 3.

Решение. Обозначим стороны прямоугольника через коэффициент пропорциональности x. 

Откуда длина одной стороны будет равна 2x, другой – 3х.

Тогда: 2(2x+3x)=26 2x+3x=13 5x=13 x=13/5 Теперь, исходя из полученных данных, определим площадь прямоугольника:

2x*3x=2*13/5*3*13/5=40,56 см2

Задача 4. Изменение длины сторон при сохранении площади прямоугольника

Длина прямоугольника увеличена на 25%. На сколько процентов надо уменьшить ширину, чтобы его площадь не изменилась? 

Решение

Площадь прямоугольника равна  S = ab 

В нашем случае один из множителей увеличился на 25%, что означает a2 = 1,25a . Таким образом, новая площадь прямоугольника должна быть равна 

S2 = 1,25ab  Таким образом, для того, чтобы вернуть площадь прямоугольника к начальному значению, то 

S2 = S / 1.25 

S2 = 1,25ab / 1.25  поскольку новый размер а изменять нельзя, то 

S2 = (1,25a) b / 1.25 

1 / 1,25 = 0,8  Таким образом, величину второй стороны нужно уменьшить на ( 1 – 0,8 ) * 100% = 20% 

Ответ: ширину нужно уменьшить на 20%. 

0  

 Периметр прямоугольника | Описание курса | Тригонометрия 

Источник: https://profmeter.com.ua/communication/learning/course/course7/lesson76/

Как найти площадь зная периметр и сторону. Как найти площадь и периметр прямоугольника? Задачи на нахождение периметра прямоугольника

Как найти площадь, зная периметр

Прямоугольник – это частный случай четырехугольника. Это значит, что у прямоугольника четыре стороны.

Его противоположные стороны равны: так например, если одна из его сторон равна 10 см, то противоположная ей будет так же равны 10 см. Частным случаем прямоугольника является квадрат.

Квадрат – это прямоугольник, у которого все стороны равны. Для вычисления площади квадрата можно пользоваться тем же алгоритмом, что и для вычисления площади прямоугольника.

Как узнать площадь прямоугольника по двум сторонам

Для того чтобы найти площадь прямоугольника, надо умножить его длину на ширину: Площадь = Длина × Ширина. В случае, указанном ниже: Площадь = AB × BC.

Как узнать площадь прямоугольника по стороне и длине диагонали

В некоторых задачах необходимо найти площадь прямоугольника, используя длину диагонали и одну из сторон. Диагональ прямоугольника делит его на два равных прямоугольных треугольника. Следовательно, можно определить вторую сторону прямоугольника, воспользовавшись теоремой Пифагора. После этого задача сводится к предыдущему пункту.

Как узнать площадь прямоугольника по периметру и стороне

Периметр прямоугольника – это сумма всех его сторон. Если известен периметр прямоугольника и одна сторона (например ширина), можно вычислить площадь прямоугольника, воспользовавшись следующей формулой:
Площадь = (Периметр×ширина – ширина2)/2.

Площадь прямоугольника через синус острого угла между диагоналями и длину диагонали

Диагонали в прямоугольнике равны, поэтому, чтобы вычислить площадь на основании длины диагонали и синуса острого угла между ними, следует воспользоваться следующей формулой: Площадь = Диагональ2 × sin(острого угла между диагоналями)/2.

Интересно, что много лет назад такой раздел математики, как «геометрия» называли «землемерием». И о том, как найти периметр и площадь, известно уже давно. К примеру, говорят, что самыми первыми вычислителями этих двух величин являются жители Египта. Благодаря таким знаниям они могли строить известные сегодня сооружения.

Умение находить площадь и периметр может пригодиться в повседневной жизни. В быту данные величины используются, когда необходимо что-либо покрасить, засадить или обработать сад, поклеить в комнате обои и т. п.

Периметр

Чаще всего необходимо узнать периметр многоугольников или треугольников. Чтобы определить эту величину, достаточно лишь знать длины всех сторон, а периметр составляет их сумму. Найти периметр, если известна площадь, также возможно.

Треугольник

Если необходимо знать периметр треугольника, для его вычисления стоит применить такую формулу P = а + b + с, где а, b, с – стороны треугольника. В этом случае все стороны обычного треугольника на плоскости суммируются.

Круг

Периметр круга обычно принято называть длиной окружности. Чтобы узнать данную величину, необходимо использовать формулу: L = π*D = 2*π*r, где L- длина окружности, r – радиус, D – диаметр, а число π, как известно, примерно равно 3,14.

Квадрат, ромб

Формулы для периметров квадрата и ромба одинаковы, потому что и у одной фигуры, и у другой все стороны равны. Поскольку квадрат и ромб имеют равные стороны, то их (стороны) можно обозначить одной буквой «а». Получается, периметр квадрата и ромба равен:

  • Р = а + а + а + а или Р = 4а

Прямоугольник, параллелограмм

У прямоугольника и параллелограмма противолежащие стороны одинаковы, поэтому их можно обозначить двумя разными буквами «а» и «b». Формула выглядит так:

  • Р = а + b + а + b = 2а + 2b. Двойку можно вывести за скобки, и получится такая формула: Р = 2 (а+b)

Трапеция

У трапеции все стороны разные, поэтому их обозначают разными буквами латинского алфавита. В связи с этим формула для периметра трапеции выглядит так:

  • Р = а + b + с + d Здесь все стороны суммируются вместе.

Площадь

Площадь – та часть фигуры, которая заключена внутри ее контура.

Прямоугольник

Чтобы вычислить площадь прямоугольника, необходимо умножить значение одной стороны (длины) на значение другой (ширины). Если значения длины и ширины обозначаются буквами «а» и «b», то площадь вычисляется по формуле:

Квадрат

Как уже известно, стороны квадрата равны, поэтому для вычисления площади можно просто взять одну сторону в квадрат:

Ромб

Формула нахождения площади ромба имеет немного другой вид: S = a*h a , где h a – это длина высоты ромба, которая проведена к стороне.

Кроме того, площадь ромба можно узнать по формулам:

  • S = a 2 *sin α, при этом а является стороной фигуры, а угол α – угол между сторонами;
  • S = 4r 2 /sin α, где r – радиус вписанной в ромб окружности, а угол α – угол между сторонами.

Параллелограмм

Для вычисления площади данной фигуры необходимо подставить значения в одну из формул:

  • S = a*b*sin α (где а, b – основания параллелограмма, α – угол между сторонами);
  • S = a*h a (где a – сторона параллелограмма, h a – это высота параллелограмма, которая опущена к стороне а);
  • S = 1/2 *d*D* sin α (где d и D – диагонали параллелограмма, α – угол между ними).

Определение.

Прямоугольник – это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.

Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.

Длинную сторону прямоугольника называют длиной прямоугольника, а короткую – шириной прямоугольника.

Стороны прямоугольника одновременно является его высотами.

Основные свойства прямоугольника

Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:

AB = CD, BC = AD

2. Противоположные стороны прямоугольника параллельны:

3. Прилегающие стороны прямоугольника всегда перпендикулярны:

AB ┴ BC, BC ┴ CD, CD ┴ AD, AD ┴ AB

4. Все четыре угла прямоугольника прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины:

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:

2d 2 = 2a 2 + 2b 2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC = ∠CDA = 180° ∠BCD = ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника – квадрат).

Стороны прямоугольника

Определение.

Длиной прямоугольника называют длину более длинной пары его сторон. Шириной прямоугольника называют длину более короткой пары его сторон.

Формулы определения длин сторон прямоугольника

1. Формула стороны прямоугольника (длины и ширины прямоугольника) через диагональ и другую сторону:

a = √d 2 – b 2

b = √d 2 – a 2

2. Формула стороны прямоугольника (длины и ширины прямоугольника) через площадь и другую сторону:

Диагональ прямоугольника

Определение.

Диагональю прямоугольника называется любой отрезок соединяющий две вершины противоположных углов прямоугольника.

Формулы определения длины диагонали прямоугольника

1. Формула диагонали прямоугольника через две стороны прямоугольника (через теорему Пифагора):

d = √a 2 + b 2

2. Формула диагонали прямоугольника через площадь и любую сторону:

4. Формула диагонали прямоугольника через радиус описанной окружности:

d = 2R

5. Формула диагонали прямоугольника через диаметр описанной окружности:

d = D о

6. Формула диагонали прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:

8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника

d = √2S: sin β

Периметр прямоугольника

Определение.

Периметром прямоугольника называется сумма длин всех сторон прямоугольника.

Формулы определения длины периметру прямоугольника

1. Формула периметру прямоугольника через две стороны прямоугольника:

P = 2a + 2b

P = 2(a + b)

2. Формула периметру прямоугольника через площадь и любую сторону:

P =2S + 2a 2 =2S + 2b 2
ab

3. Формула периметру прямоугольника через диагональ и любую сторону:

P = 2(a + √d 2 – a 2) = 2(b + √d 2 – b 2)

4. Формула периметру прямоугольника через радиус описанной окружности и любую сторону:

P = 2(a + √4R 2 – a 2) = 2(b + √4R 2 – b 2)

5. Формула периметру прямоугольника через диаметр описанной окружности и любую сторону:

P = 2(a + √D o 2 – a 2) = 2(b + √D o 2 – b 2)

Площадь прямоугольника

Определение.

Площадью прямоугольника называется пространство ограниченный сторонами прямоугольника, то есть в пределах периметра прямоугольника.

Формулы определения площади прямоугольника

1. Формула площади прямоугольника через две стороны:

S = a · b

2. Формула площади прямоугольника через периметр и любую сторону:

5. Формула площади прямоугольника через радиус описанной окружности и любую сторону:

S = a√4R 2 – a 2 = b√4R 2 – b 2

6. Формула площади прямоугольника через диаметр описанной окружности и любую сторону:

S = a√D o 2 – a 2 = b√D o 2 – b 2

Окружность описанная вокруг прямоугольника

Определение.

Окружностью описанной вокруг прямоугольника называется круг проходящий через четыре вершины прямоугольника, центр которого лежит на пересечении диагоналей прямоугольника.

Формулы определения радиуса окружности описанной вокруг прямоугольника

1. Формула радиуса окружности описанной вокруг прямоугольника через две стороны:

4. Формула радиуса окружности, которая описана около прямоугольника через диагональ квадрата :

5. Формула радиуса окружности, которая описана около прямоугольника через диаметр окружности (описанной):

6. Формула радиуса окружности, которая описана около прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу:

7. Формула радиуса окружности, которая описана около прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны у этого угла:

8. Формула радиуса окружности, которая описана около прямоугольника через синус острого угла между диагоналями и площадью прямоугольника:

Угол между стороной и диагональю прямоугольника

Формулы для определения угла между стороной и диагональю прямоугольника:

1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону:

2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями:

Угол между диагоналями прямоугольника

Формулы для определения угла меж диагоналей прямоугольника:

1. Формула определения угла меж диагоналей прямоугольника через угол между стороной и диагональю:

β = 2α

2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ.

Источник: https://www.chalt-1school.ru/children/kak-naiti-ploshchad-znaya-perimetr-i-storonu-kak-naiti-ploshchad-i-perimetr/

Как найти площадь, зная периметр – Ответы на все вопросы

Как найти площадь, зная периметр

19.08.2019

В общем случае эта задача не имеет решения, поскольку одной и той же площади могут соответствовать совершенно разные стороны. Однако, возможны случаи когда и такая задача имеет конкретные решения. Частный случай — когда прямоугольник квадрат.

Тогда площадь равна квадрату его стороны, а все стороны равны между собой. Берем корень из площади и получаем значение стороны квадрата, умножаем на 4 — вот и периметр.

Так же можно решить такую задачу если по условию стороны имеют целочисленное значение, просто методом подбора, который впрочем может дать более одного варианта ответа, но не очень много.

Поскольку площадь прямоугольника это АхВ, то отношение сторон выражается как А=S/B и любые целые значения В, при которых А также получится целым будут вариантами ответа. Соответственно периметр, удвоенная сумма этих сторон, также будет разным.

в избранное ссылка отблагодарить

По одной только площади вычислить периметр прямоугольника не возможно.Нужны ещё дополнительные сведения. А это. или одна из сторон прямоугольника, или соотношение сторон прямоугольника.Есть даже такая задача: у какого прямоугольника заданной площади максимальный периметр?А чтобы представить формулу периметра по соотношению сторон, то рассмотрим:

Пусть соотношение сторон прямоугольника ав=к.Пусть известно значение а.Тогда в= ак.

Площадь S = а*в=а*ак.Откуда а=√(к*S ). р= 2(а+в)=2(а+ак)=2a(k+1)/k =2√(k*S)(k+1)/k=2√S(k+1)

А максимальный периметр при одинаковой площади прямоугольника — у прямоугольника с равными сторонами. то есть у квадрата

К сожалению, придётся разочаровать тех, кто надеется, что, зная площадь прямоугольника, возможно найти его периметр. Не имея данных о длине хотя бы одной стороны сделать это невозможно.

Периметр прямоугольника – это сумма всех его сторон, так как противоположные стороны у него равны, то формула периметра Р=2 х (а+в). Зная же площадь (произведение сторон S=а х в) можно понять, что у нас в наличии два уравнения с тремя неизвестными (а, в и Р) и одним известным — S. Для решения этой системы уравнений не хватает ещё одного заданного параметра – одной из сторон.

  • в избранное ссылка отблагодарить
  • ПРОЕКТИРОВАНИЕ ВОДЫ И САНИТАЦИИ
  • E-mail: info@center-pss.ru
  • Время работы: Пн-Пт с 9-00 до 18-00 (без обеда)

Расчет геометрических фигур

  1. Геометрические изображения представляют собой замкнутые множества точек на плоскости или в пространстве, которые ограничены конечным числом строк.
  2. Они могут быть линейными (1D), плоскими (2D) или пространственными (3D).
  3. Каждое тело, имеющее форму, представляет собой набор геометрических изображений.

  4. Каждая картина может быть описана математической формулой разного уровня сложности.
  5. Исходя из простого математического выражения, сумма набора математических выражений.
  6. Основными математическими параметрами геометрических фигур являются радиусы, длины граней или граней и углы между ними.

  7. Ниже приведены основные геометрические формы, наиболее часто используемые в расчетах, формулах и ссылках на компьютерные программы.

Линейные геометрические фигуры

  • 1. Точка
  • Цель — основной объект измерения.
  • Главной и единственной математической характеристикой точки является ее координата.

Рассчитать расстояние между точками

2. Линия

Линия представляет собой тонкий пространственный объект с конечной длиной и представляет собой цепочку точек, связанных друг с другом. Основным математическим свойством линии является длина.

  1. Вычислить длину линии
  2. третий
  3. луч

Лед — это тонкий пространственный объект, который имеет бесконечную длину и представляет собой цепочку точек, связанных друг с другом. Основными математическими характеристиками луча являются координаты его источника и направления.

Плоские геометрические фигуры

первый

круг

Круг представляет собой геометрический локус точек на плоскости, расстояние от которого центр не превышает заданное число, которое называется радиусом этого круга. Основной математической особенностью круга является радиус.

  • Расчет площади круга (круга)Вычисление длины круга (круга)
  • второй
  • рынок

Квадрат — это четырехугольник, в котором все углы и все стороны одинаковы. Основным математическим свойством квадрата является длина его стороны.

  1. Вычислить квадрат квадратаВычисление квадрата квадрата
  2. третий
  3. прямоугольник

Прямоугольник представляет собой четырехугольник со всеми углами, равными 90 градусам (прямые линии). Основными математическими характеристиками прямоугольника являются длины его сторон.

  • Вычисление поверхности прямоугольникаВычисление периметра прямоугольника
  • четвёртая
  • треугольник

Треугольник представляет собой геометрическое изображение, образованное тремя сегментами, которые соединяют три точки (треугольные токи), которые не лежат на одной линии. Основными математическими характеристиками треугольника являются длины стороны и высота.

Расчет поверхности треугольникаВычисление треугольника треугольника

пятые

Калькулятор для расчета окружности и области геометрической формы

Trapezij

Трапеция — это четырехугольник с двумя сторонами, параллельный, а другой не параллельный. Основными математическими характеристиками трапеции являются длины сторон и высота.

  1. Расчет трапецеидальной областиРасчет окружности трапеции
  2. 6. Параллелограмма
  3. Параллелограмм — это четырехугольник, противоположные стороны которого параллельны.
  • Вычисление поверхности параллелограммаВычисление границы параллелограмма
  • седьмые
  • ромб

Римба — четырехугольник со всеми сторонами, а углы его точек не равны 90 градусам. Основными математическими особенностями ромба являются длина его бока и его высота.

  1. Расчет площади алмазаРасчет периметра алмаза
  2. восьмых
  3. эллипс

Эллипс является замкнутой кривой на плоскости, которая может быть представлена ​​в виде ортогонального проектора отрезка окружности цилиндра к плоскости. Основными математическими характеристиками круга являются длина его полупроводников.

Расчет поверхности эллипса

3D-геометрия

первый

Балон

Сфера — это геометрическое тело, представляющее собой совокупность всех точек пространства, расположенных от центра на некотором расстоянии. Основной математической характеристикой шара является его радиус.

  • Вычисление объема шараВычислить площадь поверхности сферы
  • второй
  • Sfera

Сфера — это оболочка геометрического тела, представляющая собой совокупность всех точек пространства, которые находятся от центра на некотором расстоянии. Основной математической характеристикой сферы является ее радиус.

  1. Расчет объемаРасчет площади поверхности сферы
  2. 3. Куб
  3. Куб — это геометрическое тело, которое является правильным многоугольником, чья линия является квадратом.
  4. Основной математической характеристикой куба является длина его ребра.
  5. Вычисление объема кубаРасчет поверхности куба
  6. 4. Параллелепипед

Paralelepiped — это геометрическое тело, которое является полимером с шестью гранями и каждым прямоугольником. Основными математическими свойствами параллелепипеда являются длины ребер.

  • Вычисление объема параллелепипедаРасчет поверхностей параллелепипеда
  • пятые
  • призма

Призма — многогранник, два графика которого являются одинаковыми многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммы, которые имеют обычные стороны с этими многоугольниками. Основными математическими характеристиками призмы являются основная поверхность и высота.

  1. Вычисление количества призмы
  2. шестые
  3. шишка

Конус представляет собой геометрическое число, полученное объединением всех лучей, происходящих из одного вершинного конуса и проходящих через плоскую поверхность. Основными математическими характеристиками конуса являются радиус основания и высоты.

  • Расчет объема конусаРасчет поверхностей конуса
  • седьмые
  • пирамида

Пирамида — многогранник, основой которого является произвольный многоугольник, а боковые грани — треугольники, имеющие общую цепочку. Основными математическими характеристиками пирамиды являются основная поверхность и высота.

  1. Расчет объема пирамиды
  2. восьмых
  3. цилиндр

Цилиндр представляет собой геометрическое число, ограниченное цилиндрической поверхностью и двумя параллельными плоскими плоскостями. Основными математическими характеристиками цилиндра являются радиус основания и высоты.

  • Объемный расчетРасчет поверхностей цилиндра
  • На этой странице показаны все геометрические фигуры, которые наиболее часто встречаются в геометрии, чтобы представлять объект или его часть на плоскости или во Вселенной.

Длина круга и окружности

Сегодня мы познакомимся с такими определениями, как круг, радиус, диаметр и объем.. В этой статье мы рассмотрим геометрическое изображение, которое не содержит прямых линий, но изогнуто: круг.

Мы выполняем некоторые свойства этих чисел.

Представьте точку (P ) с точным местоположением, затем перетащите все возможные точки, которые находятся на одном и том же фиксированном расстоянии r от точки (P ).

  1. Если мы перетаскиваем все точки, находящиеся на расстоянии (г ) из (Р ), то в итоге получим круг.
  2. Таким образом, окружность — это серия всех точек, одинаково отдаленных (то есть все на одном расстоянии) от центральной точки.

Площадь и дальность

Расстояние r от центра к периферии называется радиусом. Если умножить радиус на (2 ), получим диаметр круга. 

  • Объем круга
  • Как и в случае треугольников и прямоугольников, мы можем попытаться получить формулы для области и “периметр” круглый.

Но такое понятие, как “периметр”, круг нет. Существует определение длины круга. Однако расчет вычислительной схемы не так прост, как вычисление периметра прямоугольника или треугольника.

Очевидно, что, увеличивая диаметр или радиус, круг становится больше и, следовательно, объем увеличивается.

Если мы разделим любой круг по диаметру, получится постоянное число π. История π чисел была проведена параллельно с развитием всей математики и стала стандартной после работы Леонардо Эйлер в 1737 г.

Эта константа примерно равна (3,14593 ).

Точное значение (π ) неизвестно, pi — иррациональное число — неповторимое десятичное число, которое не может быть выражено как часть интегрированного счетчика и знаменателей.

Мы находим, что длина круга, деленная на диаметр, является постоянным числом π.

Диаметр вдвое превышает радиус, поэтому его можно использовать для замены. Таким образом, окружность круга может быть рассчитана, если мы знаем радиус круга или его диаметр. Для большинства вычислений, требующих правильного ответа, (π ) равно (3,14 ). Диапазон рассчитывается по формуле:

  1. (2πr )
  2. Например, если окружность имеет радиус (3 ), то ее диапазон равен (6π ).
  3. Диапазон круга рассчитывается с использованием уравнения:
  4. (πr 2 )
  5. Если круг имеет диаметр (6 ) сантиметров.
  6. Какова его область? Радиус равен (3 ), поэтому поверхность (πr 2-9π ) (cm 2 )
  7. Подпишитесь на бесплатную пробную версию здесь и узнайте, что вы не понимаете.

Дополнительные уроки и задания по математике с преподавателями нашей интернет-школы «Альфа». Зарегистрируйтесь сейчас в пробной аптеке!

Зарегистрируйтесь для бесплатного тестирования знаний!

  • Площадь и периметр фигуры являются основными ее геометрическими параметрами.
  • Их нахождение и описание с учетом известных величин составляет значительную долю в обучающем процессе.

В общем смысле периметр – это длина всех границ фигуры. Для прямоугольника он равен сумме длин его сторон. А площадь представляет собой всю внутреннюю часть фигуры, измеренной в определенных единицах. Согласно свойствам фигур, а также формулам площади и периметра, можно найти соотношения между этими параметрами фигуры и выразить одно значение из другого. Для определения площади прямоугольника с известным периметром необходимо дополнительно знать одну его сторону.

Инструкция

  • Запишите известные параметры прямоугольной фигуры. Помимо периметра, для нахождения площади должна быть известна еще одна величина – любая сторона прямоугольника.
  • Согласно формуле, периметр прямоугольника находится, как сумма всех его сторон. Так как в прямоугольнике противолежащие стороны равны, можно записать формулу периметра: Р = (d+c)*2, где d и c являются прилегающими сторонами фигуры.
  • Площадь прямоугольной фигуры определяется произведением двух ее прилегающих сторон: S = d*c.Таким образом, зная одну из сторон можно легко найти площадь фигуры.
  • Подставьте в формулу периметра известные величины: одну из сторон и периметр. Выразите из полученного уравнения вторую неизвестную сторону и вычислите ее. Подставьте полученное значение в формулу площади. Вычислите искомое значение S — площади фигуры.

Источник: https://school5mih.ru/drugoe/kak-najti-ploshhad-znaya-perimetr.html

Как найти площадь, зная периметр

Как найти площадь, зная периметр

14.03.2018

Как найти периметр прямоугольника, зная его площадь?

  1. периметер p=2*a+(2*s)/a, где а от 0 до s
  2. Чтобы найти периметр прямоугольника надо сложить все его стороны.
  3. Периметр может быть от 4*корень (S) до бесконечности.
  4. Встречный вопрос — в доме 40 квартир — сколько это этажей? — емкость в 1 литр — какой диаметр емкости?

    Продолжить?…

  5. плюс минус при подборе вручную по формуле будет иногда разницы втрое
  6. решить систему уравнений
    одно из которых — формула площади второе формула периметра
  7. S=a*b=к примеру 45см 2

    разложим на простые множители 45

    45/3=15
    15/3=5

    5/5=1

    НОД=1

    Р=2(32+51)=2(9+5)=28

    P.S. Как разложить число на простые множители см.

  8. Ни по какой. Вариантов будет бесконечное множество
  9. Прямоугольник это четырхугольник, у которого четыре прямых угла. Размеры прямоугольника задаются длиной его сторон, обозначаемых обычно a и b. Прямоугольник, все стороны которого равны (a=b) называется квадратом. Свойства прямоугольника противолежащие стороны равны и параллельны друг другу; диагонали равны и в точке пересечения делятся пополам; сумма квадратов диагоналей равна сумме квадратов всех (четырех) сторон. Периметр P прямоугольника равен удвоенной сумме сторон, прилежащих к одному углу P = 2(a + b). Длина диагонали d прямоугольника вычисляется по теореме Пифагора: d = #8730;(a2 + b2). Углы между диагоналями прямоугльника определяются соотношением сторон: #945; = 2arctg(a/b), #946; = 2arctg(b/a), #945; + #946; = 180. Площадь S прямоугольника равна произведению сторон, прилежащих к одному углу: S = ab. Также можно выразить площадь прямоугольника через длину диагоналей и угол между ними: S = d2sin(#945;/2)cos(#945;/2). Радиус описанной вокруг прямоугольника окружности равен половине длины диагонали: R = #8730;(a2 + b2)/2.

    В прямоугольник (если он не квадрат) нельзя вписать окружность так, чтобы она касалась всех его сторон. Максимальный радиус окружности, которая может поместиться внутри прямоугольника, равен половине его меньшей стороны.

  10. этого не достаточно. Надо еще знать одну из сторон
  11. надо решить систему уравнений например если пл-дь равна 16, то ситема примет вид. при учете что х это периметр, а и в стороны прямоугольника, то а*в=16 2а+2в=х отсюда верхнее уравнее системы можно выразить одну сторну через другую и подставить в нижнее уравнение, например: а=16/в то 2(16/в) +2в=х

    вот только надо знать сторону хоть одну чтобы определить вторую, а строна в как как писал выше Aqni имеет значения почти от нуля и почти до S внашем почти до 16….пиши мне на мыло если не понятно до сих пор )

Источник:

Калькулятор вычисления периметра и площади геометрических фигур

Определение периметра и площади геометрических фигур — важная задача, которая возникает при решении многих практических или бытовых задач. Если вам требуется поклеить обои, установить забор, рассчитать расход краски или кафеля, то вам обязательно придется иметь дело с геометрическими расчетами.

https://www.youtube.com/watch?v=vewUBFFPoRg

Для решения перечисленных бытовых вопросов вам потребуется работать с самыми разными геометрическими фигурами. Мы представляем вам каталог онлайн-калькуляторов, которые позволяют вычислить параметры наиболее популярных плоских фигур. Рассмотрим их.

Прямоугольный треугольник

Прямоугольный треугольник — особая вариация фигуры, у которой две стороны обязательно образуют прямой угол. Эти стороны называются катетами, а противолежащая им сторона — гипотенузой.

Соотношение катетов и гипотенузы лежит в основе евклидовой геометрии — эти соотношения определяются теоремой Пифагора.

Изучение свойств прямоугольного треугольника положило начало одному из важных разделов математики — тригонометрии, которая используется в самых разных прикладных сферах от компьютерных игр до океанографии.

Формулы для вычисления периметра и площади прямоугольного треугольника ничем не отличаются от формул для обычных вариаций данной фигуры или вытекают из них.
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.