Как найти среднее квадратическое отклонение

Содержание

Как найти среднеквадратическое отклонение

Как найти среднее квадратическое отклонение

В данной статье я расскажу о том, как найти среднеквадратическое отклонение.

Этот материал крайне важен для полноценного понимания математики, поэтому репетитор по математике должен посвятить его изучению отдельный урок или даже несколько.

В этой статье вы найдёте ссылку на подробный и понятный видеоурок, в котором рассказано о том, что такое среднеквадратическое отклонение и как его найти.

Среднеквадратическое отклонение дает возможность оценить разброс значений, полученных в результате измерения какого-то параметра. Обозначается символом (греческая буква «сигма»).

Формула для расчета довольно проста. Чтобы найти среднеквадратическое отклонение, нужно взять квадратный корень из дисперсии. Так что теперь вы должны спросить: “А что же такое дисперсия?”

Что такое дисперсия

Определение дисперсии звучит так. Дисперсия — это среднее арифметическое от квадратов отклонений значений от среднего.

Чтобы найти дисперсию последовательно проведите следующие вычисления:

  • Определите среднее (простое среднее арифметическое ряда значений).
  • Затем от каждого из значений отнимите среднее и возведите полученную разность в квадрат (получили квадрат разности).
  • Следующим шагом будет вычисление среднего арифметического полученных квадратов разностей (Почему именно квадратов вы сможете узнать ниже).

Рассмотрим на примере. Допустим, вы с друзьями решили измерить рост ваших собак (в миллиметрах). В результате измерений вы получили следующие данные измерений роста (в холке): 600 мм, 470 мм, 170 мм, 430 мм и 300 мм.

Порода собакиРост в миллиметрах
Ротвейлер600
Бульдог470
Такса170
Пудель430
Мопс300

Вычислим среднее значение, дисперсию и среднеквадратическое отклонение.

Сперва найдём среднее значение. Как вы уже знаете, для этого нужно сложить все измеренные значения и поделить на количество измерений. Ход вычислений:

Среднее   мм.

Итак, среднее (среднеарифметическое) составляет 394 мм.

Теперь нужно определить отклонение роста каждой из собак от среднего:

Наконец, чтобы вычислить дисперсию, каждую из полученных разностей возводим в квадрат, а затем находим среднее арифметическое от полученных результатов:

Дисперсия мм2.

Таким образом, дисперсия составляет 21704 мм2.

Как найти среднеквадратическое отклонение

Так как же теперь вычислить среднеквадратическое отклонение, зная дисперсию? Как мы помним, взять из нее квадратный корень. То есть среднеквадратическое отклонение равно:

мм (округлено до ближайшего целого значения в мм).

Применив данный метод, мы выяснили, что некоторые собаки (например, ротвейлеры) – очень большие собаки. Но есть и очень маленькие собаки (например, таксы, только говорить им этого не стоит).

Самое интересное, что среднеквадратическое отклонение несет в себе полезную информацию. Теперь мы можем показать, какие из полученных результатов измерения роста находятся в пределах интервала, который мы получим, если отложим от среднего (в обе стороны от него) среднеквадратическое отклонение.

То есть с помощью среднеквадратического отклонения мы получаем “стандартный” метод, который позволяет узнать, какое из значений является нормальным (среднестатистическим), а какое экстраординарно большим или, наоборот, малым.

Что такое стандартное отклонение

Но… все будет немного иначе, если мы будем анализировать выборку данных. В нашем примере мы рассматривали генеральную совокупность. То есть наши 5 собак были единственными в мире собаками, которые нас интересовали.

Но если данные являются выборкой (значениями, которые выбрали из большой генеральной совокупности), тогда вычисления нужно вести иначе.

Если есть значений, то:

  • Когда мы имеем дело с генеральной совокупностью при вычислении дисперсии, мы делим на  (как и было сделано в рассмотренном нами примере).
  • Когда мы имеем дело с выборкой, при вычислении дисперсии делим на .

Все остальные расчеты производятся аналогично, в том числе и определение среднего.

Например, если наших пять собак – только выборка из генеральной совокупности собак (всех собак на планете), мы должны делить на 4, а не на 5, а именно:

Дисперсия выборки =  мм2.

При этом стандартное отклонение по выборке равно мм (округлено до ближайшего целого значения).

Можно сказать, что мы произвели некоторую “коррекцию” в случае, когда наши значения являются всего лишь небольшой выборкой.

Примечание. Почему именно квадраты разностей?

Но почему при вычислении дисперсии мы берём именно квадраты разностей? Допустим при измерении какого-то параметра, вы получили следующий набор значений: 4; 4; -4; -4. Если мы просто сложим абсолютные отклонения от среднего (разности) между собой … отрицательные значения взаимно уничтожатся с положительными:

.

Получается, этот вариант бесполезен. Тогда, может, стоит попробовать абсолютные значения отклонений (то есть модули этих значений)?

.

На первый взгляд получается неплохо (полученная величина, кстати, называется средним абсолютным отклонением), но не во всех случаях. Попробуем другой пример. Пусть в результате измерения получился следующий набор значений: 7; 1; -6; -2. Тогда среднее абсолютное отклонение равно:

.

Вот это да! Снова получили результат 4, хотя разности имеют гораздо больший разброс.

А теперь посмотрим, что получится, если возвести разности в квадрат (и взять потом квадратный корень из их суммы).

Для первого примера получится:

.

Для второго примера получится:

.

Теперь – совсем другое дело! Среднеквадратическое отклонение получается тем большим, чем больший разброс имеют разности … к чему мы и стремились.

Фактически в данном методе использована та же идея, что и при вычислении расстояния между точками, только примененная иным способом.

И с математической точки зрения использование квадратов и квадратных корней дает больше пользы, чем мы могли бы получить на основании абсолютных значений отклонений, благодаря чему среднеквадратическое отклонение применимо и для других математических задач.

О том, как найти среднеквадратическое отклонение, вам рассказал репетитор по математике в Москве, Сергей Валерьевич

Источник: https://yourtutor.info/%D1%81%D1%80%D0%B5%D0%B4%D0%BD%D0%B5%D0%BA%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%BE%D0%B5-%D0%BE%D1%82%D0%BA%D0%BB%D0%BE%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5

Среднее квадратическое отклонение

Как найти среднее квадратическое отклонение

Одной из основныхоценок рассеяния возможных значе­нийслучайной величины служит среднееквадратическое от­клонение.

Определение 4.Средним квадратическим отклонениемслу­чайной величины Х(стандартом) называется квадратныйко­рень из ее дисперсии:

Согласно этомуопределению, из свойства 3 и формулы(18.13) следует, что в случае суммы взаимнонезависимых слу­чайных величинсправедлива формула

Пример 9.Найти дисперсию и среднее квадратическоеотклонение случайной величины X,заданной следующим распределением:

Решение.Имеем М(Х) =2,6.Составим таблицу распре­деленияслучайной величины X2:

Отсюда получаем,что М(Х2)= 14,4. По формулам (18.11) и (18.15) окончательнополучаем искомые значенияD(X)и.σ(Х):

Пример 10.Законы распределения независимыхслучайных величин Хи Yприведены соответственно в таблицах:

Найти дисперсиюи среднее квадратическое отклонениеслу­чайной величиныZ= 2Х+ 3Y.

Решение.Согласно свойствам 2 и 3 дисперсии(формулы (18.12) и (18.13)), имеем

Для вычислениядисперсийD(X)иD(Y)составляем соответ­ствующие таблицы— законы распределения случайныхвели­чин ХY2:

Отсюда получаем

Искомые дисперсияи среднее квадратичное отклонениеслу­чайной величины Zравны:

Пример11.В условиях примера 8 найти математическоеожи­дание и среднее квадратическоеотклонение прибыли при п= 1000, р= 0,8,S= 100 тыс. р. и r= 30%.

Решение.Ставка ссудного процента удовлетворяетусло­вию, чтобы математическое ожиданиеприбыли было положи­тельным: 30 > 100(1 – 0,8) / 0,8. Математическое ожиданиепри­были:

Среднее квадратическоеотклонение прибыли:

Начальные и центральные моменты

Определение 5.Начальныммоментом порядкаk случай­нойвеличины Хназывается математическое ожиданиевели­чины Хk:

В частности,

и тогда формула(18.11) для вычисления дисперсии принимаетвид

Определение 6.Центральныммоментом порядкаk случай­нойвеличины Хназывается математическое ожиданиеk-йсте­пени отклонения:

В частности,согласно формуле (18.9),μ1= 0, адисперсия слу­чайной величины Хявляется центральным моментом второгопорядка:

Соотношения,связывающие начальные и центральныемо­менты, также могут быть легкополучены. Приведем их здесь для моментовтретьего и четвертого порядков (онинаряду с моментами первого и второгопорядков широко применяются в статистике):

Моменты болеевысоких порядков применяются крайнередко.

Моменты, рассмотренныев этом разделе, называют те­оретическими.В отличие от них моменты, вычисляемыепо данным наблюдений в математическойстатистике, называют эмпирическими.

18.3. Система двух случайных величин Двумерная случайная величина

До сих пор мырассматривали дискретные случайныеве­личины, которые называют одномерными:их возможные зна­чения определялисьодним числом. Кроме одномерных вели­чинрассматривают также величины, возможныезначения ко­торых определяютсянесколькими числами.

Двумерную слу­чайнуювеличину обозначают через (X,Y);каждая из величинXи Yназывается компонентой (составляющей).Обе величи­ны Хи Y,рассматриваемые одновременно, образуютсистему двух случайных величин.

Например,при штамповке стальных пластинок ихдлина и ширина представляют собойдвумерную случайную величину.

Определение 1.Законом распределения двумернойслучай­ной величины (X,Y)называют множество возможных пар чи­сел(xi,yj)и их вероятностейp(xi,yj).Двумерную случайную величину можнотрактовать как случайную точку А(Х,Y)на координатной плоскости.

Закон распределениядвумерной случайной величины обыч­нозадается в виде таблицы, в строкахкоторой указаны воз­можные значенияxiслучайной величины X,а в столбцах — возможные значенияyjслучайной величины Y,на пересече­ниях строк и столбцовуказаны соответствующие вероятностиpij.Пусть случайная величина Хможет принимать пзначе­ний, а случайная величина Yтзначений. Тогда закон рас­пределениядвумерной случайной величины (X,Y)имеет вид

Из этой таблицыможно найти законы распределения каждойиз случайных компонент. Например,вероятность того, что слу­чайнаявеличина Хпримет значение хk,равна, согласно тео­реме сложениявероятностей независимых событий,

Иными словами, длянахождения вероятности Р(хk)нужнопросуммировать все твероятностей по k-мустолб­цу таблицы (18.21).

Аналогичнополучается вероятность то­го, чтослучайная величина Yпримет возможное значение уr:Р(уr)получается суммированием всех nвероятностей r-йстро­ки таблицы (18.21) (r= 1,2,…

,m).Отсюда следует, чтосумма всехвероятностей в законе распределения(18.21) равна единице:

Пример 1.Задано распределение двумерной случайнойвели­чины:

Найти распределенияХ,Y и Х+Y.

Решение.В нашем случае возможные значенияслучайной величины X:х1= 1, х2= 2, x3= 3. Тогда, согласно формуле (18.22), имеемP(x1)= 0,1+0,2 = 0,3,P(x2)= 0,15+0,22 = 0,37,Р(x3)= 0,12 + 0,21 = 0,33. Отсюда получаем законраспреде­ления X:

Аналогично получаеми для распределения Y:у1= 1, y2= 2;P(y1)= 0,1 + 0,15 +0,12 = 0,37,P(y2)= 0,2 + 0,22 + 0,21= 0,63;

Теперь найдемраспределениеX+Y.Возможные значения этой случайнойвеличины: 2, 3, 4 и 5. Соответствующиевероятнос­ти Р(2)= 0,1, Р(3)= 0,15+0,2 = 0,35, Р(4)= 0,12+0,22 = 0,34,Р(5)= 0,21. Отсюда находим искомое распределение:

В случае системыдвух случайных величин используютсякроме математических ожиданий и дисперсийеще и другие числовые характеристики,описывающие их взаимосвязь.

Источник: https://studfile.net/preview/6187613/page:81/

Среднее линейное и среднее квадратическое отклонение

Как найти среднее квадратическое отклонение

Среднее квадратичное отклонение определяется как обобщающая характеристика размеров вариации признака в совокупности. Оно равно квадратному корню из среднего квадрата отклонений отдельных значений признака от средней арифметической, т.е. корень из дисперсии и может быть найдена так:

1. Для первичного ряда:

2. Для вариационного ряда:

Преобразование формулы среднего квадратичного отклонени приводит ее к виду, более удобному для практических расчетов:

Среднее квадратичное отклонение определяет на сколько в среднем отклоняются конкретные варианты от их среднего значения, и к тому же является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, и поэтому хорошо интерпретируется.

Примеры нахождения cреднего квадратического отклонения: Пример 1, Пример 2

Для альтернативных признаков формула среднего квадратичного отклонения выглядит так:

где р — доля единиц в совокупности, обладающих определенным признаком;

q — доля единиц, не обладающих этим признаком.

Понятие среднего линейного отклонения

Среднее линейное отклонение определяется как средняя арифметическая абсолютных значений отклонений отдельных вариантов от их средних арифметических.

1. Для первичного ряда:

2. Для вариационного ряда:

где сумма n — сумма частот вариационного ряда.

Пример нахождения cреднего линейного отклонения: Пример 1

Преимущество среднего абсолютного отклонения как меры рассеивания перед размахом вариации, очевидно, так как эта мера основана на учете всех возможных отклонений. Но этот показатель имеет существенные недостатки.

Произвольные отбрасывания алгебраических знаков отклонений могут привести к тому, что математические свойства этого показателя являются далеко не элементарными.

Это сильно затрудняет использование среднего абсолютного отклонения при решении задач, связанных с вероятностными расчетами.

Поэтому среднее линейное отклонение как мера вариации признака применяется в статистической практике редко, а именно тогда, когда суммирование показателей без учета знаков имеет экономический смысл. С его помощью, например, анализируется оборот внешней торговли, состав работающих, ритмичность производства и т. д.

Среднее квадратическое

Среднее квадратическое применяется, например, для вычисления средней величины сторон n квадратных участков, средних диаметров стволов, труб и т. д. Она подразделяется на два вида.

Средняя квадратичная простая. Если при замене индивидуальных величин признака на среднюю величину необходимо сохранить неизменной сумму квадратов исходных величин, то средняя будет являться квадратичной средней величиной.

Она является квадратным корнем из частного от деления суммы квадратов отдельных значений признака на их число:

Средняя квадратичная взвешенная вычисляется по формуле:

где f — признак веса.

Средняя кубическая

Средняя кубическая применяется, например, при определении средней длины стороны и кубов. Она подразделяется на два вида.
Средняя кубическая простая:

Средняя кубическая взвешенная:

При расчете средних величин и дисперсии в интервальных рядах распределения истинные значения признака заменяются центральными значениями интервалов, которые отличны от средней арифметической значений, включенных в интервал.

Это приводит к возникновению систематической погрешности при расчете дисперсии. В.Ф.

Шеппард определил, что погрешность в расчете дисперсии, вызванная применением сгруппированных данных, составляет 1/12 квадрата величины интервала как в сторону повышения, так и в сторону понижения величины дисперсии.

Поправка Шеппарда должна применяться, если распределение близко к нормальному, относится к признаку с непрерывным характером вариации, построено по значительному количеству исходных данных (n > 500). Однако исходя из того, что в ряде случаев обе погрешности, действуя в разных направлениях компенсируют друг друга, можно иногда отказаться от введения поправок.

Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность и тем более типичной будет средняя величина.
В практике статистики часто возникает необходимость сравнения вариаций различных признаков.

Например, большой интерес представляет сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д.

Для таких сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях.

Для осуществления таких сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с разными средним арифметическим используется относительный показатель вариации — коэффициент вариации.

Структурные средние

Для характеристики центральной тенденции в статистических распределениях не редко рационально вместе со средней арифметической использовать некоторое значение признака X, которое в силу определенных особенностей расположения в ряду распределения может характеризовать его уровень.

Это особенно важно тогда, когда в ряду распределения крайние значения признака имеют нечеткие границы. В связи с этим точное определение средней арифметической, как правило, невозможно, либо очень сложно. В таких случаях средний уровень можно определить, взяв, например, значение признака, которое расположено в середине ряда частот или которое чаще всего встречается в текущем ряду.

Такие значения зависят только от характера частот т. е. от структуры распределения.

Они типичны по месту расположения в ряду частот, поэтому такие значения рассматриваются в качестве характеристик центра распределения и поэтому получили определение структурных средних.

Они применяются для изучения внутреннего строения и структуры рядов распределения значений признака. К таким показателям относятся мода и медиана.

Источник: Балинова B.C. Статистика в вопросах и ответах: Учеб. пособие. — М.: ТК. Велби, Изд-во Проспект, 2004. — 344 с.

Источник: http://univer-nn.ru/statistika/srednee-linejnoe-otklonenie/

Среднеквадратическое отклонение

Как найти среднее квадратическое отклонение

Предлагаемая здесь программа, помимо расчета среднеквадратического отклонения, умеет еще и приводить исходные данные к стандартному виду, а так же упорядочивать их по возрастанию или убыванию…

Среднеквадратическое отклонение σ в строгом смысле является частным случаем стандартного отклонения S0 (стандартной ошибки), хотя зачастую их уравнивают как синонимы, но в случае среднеквадратического отклонения мы имеем дело с отклонением от среднего арифметического [1] значения конечного набора величин, а в случае стандартного отклонения – с отклонением от математического ожидания некой (чаще всего случайной) величины.

Среднеквадратическое отклонение значений множества заданных чисел от среднего арифметического определяется как число равное квадратному корню от суммы квадратов разности этих чисел и среднего арифметического, делённой на количество этих чисел:

σ = 

(a1 – acp)2 + (a2 – acp)2 + …+ (an – acp)2 n
 

В другом варианте определения можно сказать, что среднее квадратическое отклонение (стандартное отклонение) равно квадратному корню от дисперсии случайной величины[2] как меры разброса значений случайной величины относительно её математического ожидания.

Расчет среднеквадратического отклонения

Для начала расчета среднеквадратического отклонения введите исходные числа в одно из полей ввода-вывода данных.

В первое поле можно ввести последовательность чисел, разделенных точкой с запятой (программа попытается так же преобразовать к стандартному виду, например, вставленную копию последовательности чисел с плавающей точкой, разделенных пробелами, запятой или точкой с запятой).

Во второе поле можно вводить числа по одному – они автоматически будут добавляться к данным первого поля, если расчет не запустился автоматически, кликните по зеленой кнопке, показывающей количество чисел в исследуемом массиве:

ВНИМАНИЕ! При перезагрузке страницы введенная информация не сохраняется, если Вы не сгенерировали код для записи результатов работы в командной строке:

Сохранить расчет среднеквадратического отклонения в истории браузера

Адресную строку с кодом из Ваших данных Вы можете можете переслать на любое устройство и воспроизвести на нем результаты расчетов

После того как будут введены хотя бы два исходных числа цвет квадратной кнопки на поле ввода данных должен поменяться с оранжевого на зеленый и автоматически начнется расчет среднеквадратического отклонения и сопутствующих параметров, если это не произошло, то кликните по зеленому полю кнопки.

  • Среднее арифметическое – расчет онлайн, определение, формула
  • Среднеквадратическое отклонение – расчет онлайн, определение, формула
  • Среднее геометрическое – расчет онлайн, определение, формула
  • Среднее гармоническое и среднее степенное – расчет онлайн, определения, формулы
  • Среднее квадратическое – расчет онлайн, определение, формула

Свойства среднеквадратического отклонения

1. Среднее квадратическое отклонение имеет всегда положительную или равную нулю величину:

0 ≤ σ.
 

2. Среднее квадратическое отклонение для заданного множества неотрицательных чисел лежит между минимальным и максимальным значением линейного отклонения от среднего значения этого множества.

3. Кроме того квадратическое отклонение подчиняется неравенству о средних, то есть для любого множества чисел оно не меньше среднего линейного отклонения:

δ ≤ σ

Прикладное значение среднеквадратического отклонения

Среднеквадратическое отклонение от отклонений значений исследуемых данных находит широкое прикладное применение в метрологии, экспериментальной физике и статистике.

При обработке результатов измерений во многих случаях их окончательные значения определяются как среднее арифметическое от значений, полученных в результате эксперимента, при этом среднеквадратическое отклонение[3],[4] величин будет являться оценкой ошибки измерений.

В свою очередь на основе минимизации среднеквадратических отклонений в 19 веке был разработан метод наименьших квадратов, который нашел широкое применение в таких областях как статистический, регрессионный анализ, обработка экспериментальных данных и вычислительная математика.

P.S. На этой странице используется Бета версия программы расчета среднеквадратического отклонения, об обнаруженных недочетах, а так же возможных пожеланиях просьба сообщить на форум сайта (окно для входа на форум находится в нижней части страницы).

1. Среднее арифметическоезначение (чаще используется термин, просто, “среднее арифметическое” или “среднее”) множества заданных чисел определяется как число равное сумме всех чисел множества, делённой на их количество:

aср.арифм =  

a1+ a2+ …+ an n
 

2. Если вычислено арифметическое среднее заданного множества чисел, то во многих случаях, становится желательной оценка рассеяния значений этих чисел относительно среднего. Оценка расходимости квадратов значений этих чисел от среднего и является оценкой дисперсии.

Вообще термин дисперсия появился в рамках теорий вероятностей. Одной из ее основополагающих характеристик является дисперсия случайной величины как мера разброса значений случайной величины относительно её математического ожидания.

Не углубляясь в дебри Тер-Вера, здесь приводим только используемую для наших расчетов формулу дисперсии:

σ 2 =  

(a1 – acp)2 + (a2 – acp)2 + …+ (an – acp)2 n
 

3.Среднее линейное отклонение определяется как среднее от абсолютных значений отклонений каждого из ряда чисел от их среднего арифметического:

δ =  

|a1 – acp| + |a2 – acp| + …+ |an – acp| n
 

4. Коэффициент вариации ряда чисел — мера относительного разброса их значений; показывает, какую долю от среднего значения этой величины составляет её средний разброс. Исчисляется в процентах:

V =  

σ aср
 

  × 100%

5. Размахом ряда чисел называется разность между наибольшим и наименьшим из этих чисел. Таким образом, размах вариации может быть представлен следующей формулой:

R = amax – amin

Статьи Блог Копилка ✔ Среднеквадратическое отклонение

Источник: http://www.abc2home.ru/blog/srednekvadraticheskoe_otklonenie.html

Среднеквадратичное отклонение – правила, формулы и примеры расчета

Как найти среднее квадратическое отклонение

Слово статистика образовано от латинского status, которое обозначает состояние. От этого корня произошли слова stato (государство), statistica (сумма знаний о государстве).

Математическая статистика — наука, которая изучает методы сбора и обработки информации, представленной в численном виде. Эта информация появляется как результат экспериментов.

Во многом математическая статистика опирается на теорию вероятностей, которая позволяет оценить точность и надёжность заключений, сделанных на основании изучения ограниченных статистических данных.

Метод не исследует сущность процессов, а формулирует и описывает их количественную сторону.

Термином генеральная совокупность обозначается общность всех объектов, относительно которых необходимо сделать выводы при изучении научной проблемы.

Выборочная совокупность или выборка — множество объектов, отобранных из генеральной совокупности для исследования. Основные цели математической статистики:

  • указание способов сбора и систематизации статистических данных;
  • определение закона распределения случайной величины;
  • поиск неопределённых параметров;
  • проверка подлинности выдвинутых гипотез.

Главный метод математической статистики — выборочный метод, состоящий в исследовании представительной выборочной совокупности для получения достоверной характеристики генеральной. Отбор объектов в выборку производится случайно, а исследуемое свойство должно обладать статистической устойчивостью, то есть иметь высокую частоту повторений при многократных испытаниях.

Выборочный метод сокращает время и трудоёмкость исследований, так как изучение всей совокупности оказывается более тяжёлым или невозможным. Математическая статистика выявляет закономерности массовых явлений и предсказывает появление внешних влияний.

Размах вариации

Вариация — это различия значений признака у единиц исследуемой совокупности. Она образуется из-за того, что индивидуальные значения формируются при различных условиях. Выборка должна быть представительной, чтобы по результатам её исследований можно было сделать правильные выводы о характеристиках всей совокупности.

Количественная репрезентативность достигается при использовании достаточного числа наблюдений в выборке, которое может обеспечить получение достоверных результатов.

Качественная репрезентативность заключается в одинаковой структуре выборочной и генеральной совокупностей по признакам, имеющим влияние на получение конечного результата.

К абсолютным показателям вариации относятся:

  • размах, R;
  • среднее линейное отклонение, a;
  • среднеквадратичное отклонение, σ (сигма);
  • дисперсия, D.

Размах вариации показывает абсолютную разницу между максимумом и минимумом значений признака:

R = x max — x min, где x — значения признака.

Основным недостатком показателя R можно назвать то обстоятельство, что колебания значений признака могут вызываться случайными причинами и искажать характерный для исследуемой совокупности размах.

Показатели отклонения

Существуют показатели вариации, учитывающие все значения величин, а не только наибольшие или наименьшие. Одним из них можно назвать среднее линейное отклонение — показатель, характеризующий меру разброса значений. Сначала требуется определить точку отсчёта разброса.

Как правило, ею становится среднее арифметическое значение, входящее в исследование величин. Потом необходимо измерить, отклонение от среднего для каждого значения. Все отклонения вычисляются по модулю и определяется среднее значение уже среди них.

Формула для расчёта отклонения:

a = Σ n i=1 (x — x̅) / n, где:

  • a — среднее линейное отклонение;
  • n — количество значений в исследуемой совокупности;
  • x — анализируемый показатель;
  • x̅ — среднее значение показателя.

СКО характеризует разброс значений относительно среднего математического ожидания. Оно измеряется в единицах измерения само́й величины. Существует правило, согласно которому для нормально распределённых данных диапазон разброса 997 значений из 1 тыс. составляет три сигмы от средней арифметической, [x̅ – 3σ; x̅ + 3σ].

Коэффициент вариации

Квадратичное отклонение — это абсолютная оценка меры разброса. Для того чтобы сравнить величину разброса с самими значениями величины, необходимо применить относительный показатель — коэффициент вариации:

V = σ / x̅, где σ — стандартное отклонение из выборки, x̅ — среднее арифметическое.

Коэффициент вариации измеряется в процентах. Показатель полезен для сравнивания однородности разных процессов.

Математическое ожидание — среднее значение случайной величины. Для дискретной выборки оно определяется по формуле:

M (X)= Σ ni=1 xi ⋅ pi, где xi — случайные значения, pi — их вероятность.

Дисперсией называется среднее значение квадрата отклонения случайной величины от её математического ожидания:

D (X) = M (X2) — (M (X))2

Для дискретной случайной величины формула приобретает вид:

D (X) = Σ ni=1 xi2 ⋅ pi — M (X)2.

Среднеквадратическое отклонение или стандартный разброс — это корень квадратный из дисперсии, формула которого имеет вид:

σ(X) = √ D (X).

Дисперсия и стандартный разброс — взаимозависимые характеристики. Стандартная ошибка среднего — величина, которая характеризует квадратическое отклонение выборочного среднего, рассчитанного по выборке размера из генеральной совокупности. Величина ошибки SDx̅ зависит от дисперсии генеральной совокупности и объёма выборки и рассчитывается по формуле:

SDx̅ = σ / √ n, где σ — величина стандартного разброса генеральной совокупности, а n — объём выборки.

Статистическая закономерность — это количественная форма проявления причинной связи. Она возникает как результат воздействия большого числа причин, действующих либо постоянно, либо только временами.

Существует ряд статистических критериев, которые позволяют сравнивать экспериментально полученное распределение с нормальным, полученным в теории. Погрешность измерения — отклонение измеренного значения величины от действительного, являющиеся характеристикой точности измерения.

Вместе с полученным результатом должна указываться погрешность измерений.

Пример расчёта

Пример расчёта по формулам для среднеквадратичного отклонения и дисперсии при решении следующей задачи по теории вероятностей: для выполнения ремонтных работ рабочему необходима краска определённого цвета.

В городе имеется четыре строительных магазина, в каждом из которых эта краска может находиться в продаже с вероятностью 0,41. Записать закон распределения количества посещаемых магазинов. Рассчитать дисперсию и среднеквадратичное отклонение случайной величины.

Обход заканчивается после того, как необходимая краска будет куплена или после посещения всех четырёх магазинов.

x = 1 — краска куплена в первом магазине.

p (1) = 0,41.

x = 2 — краски не нашлось в первом магазине, но она была во втором.

p (2) = (1 — 0,41) · 0,41 = 0,59 · 0,41 = 0,242.

x = 3 — краски не нашлось в двух первых магазинах, но она была в третьем.

p (3) = (1 — 0,41)2 · 0,41 = 0,592 · 0,41 = 0,143.

x = 4 — краски не было в первых трёх магазинах, рабочий зашёл в четвёртый магазин, купил краску или просто закончил обход.

p (4) = 0,593 · 0,41 + 0,594 = 0,205.

Закон распределения:

xi 1 2 3 4
p (X) 0,41 0,242 0,143 0.205

Математическое ожидание: M (X) = 1 · 0,41 + 2 · 0.242 + 3 · 0,143 + 4 · 0,205 = 2,143.

Дисперсия: D (X) = Σ ni=1 xi2 ⋅ pi — M (X)2 = 12 · 0,41 + 22 · 0,242 + 32 · 0,143 + 42 · 0,205 — 2,1432 = 1,353.

Стандартное отклонение: σ(X) = √ D (X) = √1,353 = 1,163.

Ответ: Дисперсия 1,353; квадратическое отклонение 1,163.

Для вычисления среднеквадратичного отклонения в онлайн-калькуляторе достаточно внести в таблицу значения случайной величины xi и их количество.

Среднеквадратичное отклонение применяется для определения погрешности при проведении последовательных измерений. Эта характеристика играет важную роль для сравнения изучаемого процесса с теоретически предсказанным. Если СКО велико, то полученные результаты или метод их получения нужно проверить.

Источник: https://nauka.club/matematika/srednekvadratichno%D0%B5-otkloneni%D0%B5.html

Дисперсия, среднеквадратичное (стандартное) отклонение, коэффициент вариации в Excel

Как найти среднее квадратическое отклонение

Из предыдущей статьи мы узнали о таких показателях, как размах вариации, межквартильный размах и среднее линейное отклонение. В этой статье изучим дисперсию, среднеквадратичное отклонение и коэффициент вариации.

Дисперсия

Дисперсия случайной величины – это один из основных показателей в статистике. Он отражает меру разброса данных вокруг средней арифметической.

Сейчас небольшой экскурс в теорию вероятностей, которая лежит в основе математической статистики. Как и матожидание, дисперсия является важной характеристикой случайной величины. Если матожидание отражает центр случайной величины, то дисперсия дает характеристику разброса данных вокруг центра.

Формула дисперсии в теории вероятностей имеет вид:

То есть дисперсия — это математическое ожидание отклонений от математического ожидания.

На практике при анализе выборок математическое ожидание, как правило, не известно. Поэтому вместо него используют оценку – среднее арифметическое. Расчет дисперсии производят по формуле:

где

s2 – выборочная дисперсия, рассчитанная по данным наблюдений,

X – отдельные значения,

X̅– среднее арифметическое по выборке.

Стоит отметить, что у такого расчета дисперсии есть недостаток – она получается смещенной, т.е. ее математическое ожидание не равно истинному значению дисперсии. Подробней об этом здесь. Однако при увеличении объема выборки она все-таки приближается к своему теоретическому аналогу, т.е. является асимптотически не смещенной.

Простыми словами дисперсия – это средний квадрат отклонений. То есть вначале рассчитывается среднее значение, затем берется разница между каждым исходным и средним значением, возводится в квадрат, складывается и затем делится на количество значений в данной совокупности. Разница между отдельным значением и средней отражает меру отклонения.

В квадрат возводится для того, чтобы все отклонения стали исключительно положительными числами и чтобы избежать взаимоуничтожения положительных и отрицательных отклонений при их суммировании. Затем, имея квадраты отклонений, просто рассчитываем среднюю арифметическую. Средний – квадрат – отклонений. Отклонения возводятся в квадрат, и считается средняя.

Теперь вы знаете, как найти дисперсию.

Расчет дисперсии в Excel

Генеральную и выборочную дисперсии легко рассчитать в Excel. Есть специальные функции: ДИСП.Г и ДИСП.В соответственно.

В чистом виде дисперсия не используется. Это вспомогательный показатель, который нужен в других расчетах. Например, в проверке статистических гипотез или расчете коэффициентов корреляции. Отсюда неплохо бы знать математические свойства дисперсии.

Свойства дисперсии

Свойство 1. Дисперсия постоянной величины A равна 0 (нулю).

D(A) = 0

Свойство 2. Если случайную величину умножить на постоянную А, то дисперсия этой случайной величины увеличится в А2 раз. Другими словами, постоянный множитель можно вынести за знак дисперсии, возведя его в квадрат.

D(AX) = А2 D(X)

Свойство 3. Если к случайной величине добавить (или отнять) постоянную А, то дисперсия останется неизменной.

D(A + X) = D(X)

Свойство 4. Если случайные величины X и Y независимы, то дисперсия их суммы равна сумме их дисперсий.

D(X+Y) = D(X) + D(Y)

Свойство 5. Если случайные величины X и Y независимы, то дисперсия их разницы также равна сумме дисперсий.

D(X-Y) = D(X) + D(Y)

Среднеквадратичное (стандартное) отклонение

Если из дисперсии извлечь квадратный корень, получится среднеквадратичное (стандартное) отклонение (сокращенно СКО). Встречается название среднее квадратичное отклонение и сигма (от названия греческой буквы). Общая формула стандартного отклонения в математике следующая:

На практике формула стандартного отклонения следующая:

Как и с дисперсией, есть и немного другой вариант расчета. Но с ростом выборки разница исчезает.

Расчет cреднеквадратичного (стандартного) отклонения в Excel

Для расчета стандартного отклонения достаточно из дисперсии извлечь квадратный корень. Но в Excel есть и готовые функции: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В (по генеральной и выборочной совокупности соответственно).

Среднеквадратичное отклонение имеет те же единицы измерения, что и анализируемый показатель, поэтому является сопоставимым с исходными данными.

Расчет коэффициента вариации в Excel

Расчет коэффициента вариации в Excel также производится делением стандартного отклонения на среднее арифметическое:

=СТАНДОТКЛОН.В()/СРЗНАЧ()

Коэффициент вариации обычно выражается в процентах, поэтому ячейке с формулой можно присвоить процентный формат:

Коэффициент осцилляции

Еще один показатель разброса данных на сегодня – коэффициент осцилляции. Это соотношение размаха вариации (разницы между максимальным и минимальным значением) к средней. Готовой формулы Excel нет, поэтому придется скомпоновать три функции: МАКС, МИН, СРЗНАЧ.

Коэффициент осцилляции показывает степень размаха вариации относительно средней, что также можно использовать для сравнения различных наборов данных.

Таким образом, в статистическом анализе существует система показателей, отражающих разброс или однородность данных. 

Ниже видео о том, как посчитать коэффициент вариации, дисперсию, стандартное (среднеквадратичное) отклонение и другие показатели вариации в Excel.

в социальных сетях:

Источник: https://statanaliz.info/statistica/opisanie-dannyx/dispersiya-standartnoe-otklonenie-koeffitsient-variatsii/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.