Как научиться считать на счетах

Содержание

Как освоить устный счёт школьникам и взрослым

Как научиться считать на счетах

Кроме отличных оценок по математике, умение считать в уме даёт массу преимуществ на протяжении всей жизни. Упражняясь в вычислениях без калькулятора, вы:

  • Держите мозг в тонусе. Для эффективной работы интеллект, как и мускулатура, нуждается в постоянных тренировках. Счёт в уме развивает память, логическое мышление и концентрацию, повышает способность к обучению, помогает быстрее ориентироваться в ситуации и принимать правильные решения.
  • Заботитесь о своём психическом здоровье. Исследования показывают , что при устном счёте задействованы участки мозга, ответственные за депрессию и тревожность. Чем активнее работают эти зоны, тем меньше риск неврозов и чёрной тоски.
  • Страхуетесь от проколов в бытовых ситуациях. Способность быстро посчитать сдачу, размер чаевых, количество калорий или проценты по кредиту защищает вас от незапланированных трат, лишнего веса и мошенников.

Освоить приёмы быстрого счёта можно в любом возрасте. Не беда, если сначала вы будете немного «тормозить». Ежедневно практикуйте основные арифметические операции по 10–15 минут и уже через пару месяцев достигнете заметных результатов.

Суммируем однозначные числа

Начните тренировку с элементарного уровня — сложения однозначных чисел с переходом через десяток. Эту технику осваивают в первом классе, но почему-то часто забывают с возрастом.

  • Предположим, вам нужно сложить 7 и 8.
  • Посчитайте, сколько семёрке не хватает до десяти: 10 − 7 = 3.
  • Разложите восьмёрку на сумму трёх и второй части: 8 = 3 + 5.
  • Добавьте вторую часть к десяти: 10 + 5 = 15.

Тот же приём «опоры на десятку» используйте при суммировании однозначных чисел с двузначными, трёхзначными и так далее. Оттачивайте простейшее сложение, пока не научитесь совершать одну операцию за пару секунд.

Суммируем многозначные числа

Основной принцип — разбить слагаемые числа на разряды (тысячи, сотни, десятки, единицы) и суммировать между собой одинаковые, начиная с самых крупных.

Допустим, вы прибавляете 1 574 к 689.

  • 1 574 раскладывается на четыре разряда: 1 000, 500, 70 и 4. 689 — на три: 600, 80 и 9.
  • Теперь суммируем: тысячи с тысячами (1 000 + 0 = 1 000), сотни с сотнями (500 + 600 = 1 100), десятки с десятками (70 + 80 = 150), единицы с единицами (4 + 9 = 13).
  • Группируем числа так, как нам удобно, и складываем то, что получилось: (1 000 + 1 100) + (150 + 13) = 2 100 + 163 = 2 263.

Основная сложность — удержать в голове все промежуточные результаты. Упражняясь в таком счёте, вы заодно тренируете память.

Вычитаем однозначные числа

Снова возвращаемся в первый класс и оттачиваем навык вычитания однозначного числа с переходом через десяток.

Предположим, вы хотите отнять 8 от 35.

  • Представьте 35 в виде суммы 30 + 5.
  • Из 5 вычесть 8 нельзя, поэтому раскладываем 8 на сумму 5 + 3.
  • Вычтем 5 из 35 и получим 30. Затем отнимем от 30 оставшуюся тройку: 30 − 3 = 27.

Вычитаем многозначные числа

В отличие от сложения, при вычитании многозначных чисел на разряды нужно разбивать только то, которое вы отнимаете.

Например, вас просят отнять 347 от 932.

  • Число 347 состоит из трёх разрядных частей: 300 + 40 + 7.
  • Сначала вычитаем сотни: 932 − 300 = 632.
  • Переходим к десяткам: 632 − 40. Для удобства 40 можно представить в виде суммы 30 + 10. Сперва вычтем 30 и получим 632 − 30 = 602. Теперь отнимем от 602 оставшиеся 10 и получим 592.
  • Осталось разобраться с единицами, используя всё ту же «опору на десятку». Сперва вычитаем из 592 двойку: 592 − 2 = 590. А затем то, что осталось от семёрки: 7 − 2 = 5. Получаем: 590 − 5 = 585.

Как научиться умножать в уме

Лайфхакер уже писал о том, как быстро освоить таблицу умножения.

Добавим, что наибольшие трудности и у детей, и у взрослых вызывает умножение 7 на 8. Есть простое правило, которое поможет вам никогда не ошибаться в этом вопросе. Просто запомните: «пять, шесть, семь, восемь» — 56 = 7 × 8.

А теперь перейдём к более сложным случаям.

Умножаем однозначные числа на многозначные

По сути, здесь всё элементарно. Разбиваем многозначное число на разряды, перемножаем каждый на однозначное число и суммируем результаты.

Разберём на конкретном примере: 759 × 8.

  • Разбиваем 759 на разрядные части: 700, 50 и 9.
  • Умножаем каждый разряд по отдельности: 700 × 8 = 5 600, 50 × 8 = 400, 9 × 8 = 72.
  • Складываем результаты, разбивая их на разряды: 5 600 + 400 + 72 = 5 000 + (600 + 400) + 72 = 5 000 + 1 000 + 72 = 6 000 + 72 = 6 072.

Умножаем двузначные числа

Тут уже рука сама тянется к калькулятору или хотя бы к бумаге и ручке, чтобы воспользоваться старым добрым умножением в столбик. Хотя ничего сверхсложного в этой операции нет. Просто нужно немного потренировать краткосрочную память.

Попробуем умножить 47 на 32, разбив процесс на несколько шагов.

  • 47 × 32 — это то же, что и 47 × (30 + 2) или 47 × 30 + 47 × 2.
  • Сначала умножим 47 на 30. Проще некуда: 47 × 3 = 40 × 3 + 7 × 3 = 120 + 21 = 141. Приписываем справа нолик и получаем: 1 410.
  • Поехали дальше: 47 × 2 = 40 × 2 + 7 × 2 = 80 + 14 = 94.
  • Осталось сложить результаты: 1 410 + 94 = 1 500 + 4 = 1 504.

Этот принцип можно применять и к числам с большим количеством разрядов, но удержать в уме столько операций не каждому под силу.

Упрощаем умножение

Кроме общих правил, есть несколько лайфхаков, облегчающих умножение на определённые однозначные числа.

Умножение на 4

Можно умножить многозначное число на 2, а потом снова на 2.

Пример: 146 × 4 = (146 × 2) × 2 = (200 + 80 + 12) × 2 = 292 × 2 = 400 + 180 + 4 = 584.

Умножение на 5

Умножьте исходное число на 10, а потом разделите на 2.

Пример: 489 × 5 = 4 890 / 2 = 2 445.

Умножение на 9

Умножьте на 10, а затем отнимите от результата исходное число.

Пример: 573 × 9 = 5 730 − 573 = 5 730 − (500 + 70 + 3) = 5 230 − (30 + 40) − 3 = 5 200 − 40 − 3 = 5 160 − 3 = 5 157.

Умножение на 11

Приём сводится к следующему: впереди и сзади подставляем первую и последнюю цифры исходного числа. А между ними последовательно суммируем все цифры.

При умножении на двузначное число всё выглядит крайне просто.

Пример: 36 × 11 = 3(3+6)6 = 396.

Если сумма переходит через десяток, в центре остаётся разряд единиц, а к первой цифре добавляем один.

Пример: 37 × 11 = 3(3+7)7 = 3(10)7 = 407.

Чуть сложнее с умножением на более крупные числа.

Пример: 543 × 11 = 5(5+4)(4+3)3 = 5 973.

Как научиться делить в уме

Это операция, обратная умножению, поэтому и успех во многом зависит от знания всё той же школьной таблицы. Остальное — дело практики.

Делим на однозначное число

Для этого разбиваем исходное многозначное число на удобные части, которые точно будут делиться на наше однозначное.

Попробуем разделить 2 436 на 7.

  • Выделим из 2 436 наибольшую часть, которая нацело разделится на 7. В нашем случае это 2 100. Получаем (2 100 + 336) / 7.
  • Продолжаем в том же духе, только теперь с числом 336. Очевидно, что на 7 разделится 280. А в остатке будет 56.
  • Теперь делим каждую часть на 7: (2 100 + 280 + 56) / 7 = 300 + 40 + 8 = 348.

Делим на двузначное число

Это уже высший пилотаж, но мы всё равно попытаемся.
Предположим, вам надо поделить 1 128 на 24.

  • Прикидываем, сколько раз 24 может поместиться в 1 128. Очевидно, что 1 128 примерно в два раза меньше, чем 24 × 100 (2 400). Поэтому для «пристрелки» возьмём множитель 50: 24 × 50 = 1 200.
  • До 1 200 нашему делимому 1 128 не хватает 72. Сколько раз 24 поместится в 72? Правильно, 3. А значит, 1 128 = 24 × 50 − 24 × 3 = 24 × (50 − 3) = 24 × 47. Стало быть, 1128 / 24 = 47.

Мы взяли не самый трудный пример, но пользуясь методом «пристрелки» и дроблением на удобные части, вы научитесь совершать и более сложные операции.

Что поможет освоить устный счёт

Для упражнений придётся ежедневно придумывать новые и новые примеры, только если вы сами этого хотите. В противном случае воспользуйтесь другими доступными способами.

Настольные игры

Играя в те, где необходимо постоянно вычислять в уме, вы не просто учитесь быстро считать. А совмещаете полезное с приятным времяпрепровождением в кругу семьи или друзей.

Карточные забавы вроде «Уно» и всевозможные варианты математического домино позволяют школьникам играючи освоить простое сложение, вычитание, умножение и деление. Более сложные экономические стратегии а-ля «Монополия» развивают финансовое чутьё и оттачивают сложные навыки счёта.

Что купить

  • «Уно»;
  • «7 на 9»;
  • «7 на 9 multi»;
  • «Трафик Джем»;
  • «Хекмек»;
  • «Математическое домино»;
  • «Умножариум»;
  • «Код фараона»;
  • «Суперфермер»;
  • «Монополия».

Мобильные приложения

С ними вы сможете довести устный счёт до автоматизма. Большинство из них предлагают решить примеры на сложение, вычитание, умножение и деление по программе младших классов. Но вы удивитесь, насколько это непросто. Особенно если задачи нужно щёлкать на время, без ручки и бумаги.

Математика: устный счёт, таблица умножения

Охватывает задания на устный счёт, которые соответствуют 1–6 классам школьной программы, включая и задачи на проценты. Позволяет тренировать скорость и качество счёта, а также настраивать сложность. Например, от простой таблицы умножения можно перейти к умножению и делению двузначных и трёхзначных чисел.

Математика в уме

Ещё один простой и понятный тренажёр устного счёта с подробной статистикой и настраиваемой сложностью.

1 001 задача для счёта в уме

В приложении используются примеры из пособия по математике «1 001 задача для умственного счёта», которое ещё в XIX веке составил учёный и педагог Сергей Рачинский.

Разработчик: Roman Koksharov

Цена: Бесплатно

Математические хитрости

Приложение позволяет легко и ненавязчиво освоить основные математические приёмы, которые облегчают и ускоряют устный счёт. Каждый приём можно отработать в тренировочном режиме. А потом поиграть на скорость вычислений с собой или соперником.

Quick Brain

Цель игры — правильно решить как можно больше математических примеров за определённый промежуток времени. Тренирует знание таблицы умножения, сложение и вычитание. А ещё содержит популярный математический пазл «2 048».

Веб-сервисы

Регулярно заниматься интеллектуальной зарядкой с числами можно и на математических онлайн-тренажёрах. Выбирайте необходимый вам тип действия и уровень сложности — и вперёд, к новым интеллектуальным вершинам. Вот лишь несколько вариантов.

  • Математика.Club — тренажёр устного счёта.
  • Школа Аристова — тренажёр устного счёта (охватывает двузначные и трёхзначные числа).
  • «Развивайка» — тренировка устного счёта в пределах ста.
  • 7gy.ru — тренажёр по математике (вычисления в пределах ста).
  • Chisloboy — онлайн-игра на развитие скорости счёта.
  • kid-mama — тренажёры по математике для 0–6 классов.

Источник: https://Lifehacker.ru/ustnyj-schyot/

ВВЕДЕНИЕ

В старинных русских рукописях, относящихся к XVI—XV11 столетиям, встречаются описания наиболее древних приспособлений русского инструментального счета, в -свое время широко распространенных на Руси под названиями «счета костьми» и «дощаного счета». Оба эти прибора являются отдаленными предками со­временных русских конторских счетов.

Согласно дошедшему до наших дней «Указу како костьми считать», русский «счет костьми» состоял в сле­дующем.

На специально приспособленной для этой цели доске или просто на столе прочерчивались мелом шесть или семь горизонтальных линий, которые затем пересекались одной или несколькими вертикальными линиями, делившими доску на два или несколько полей, в зависимости от сложности арифметических действий, которые предстояло выполнить.

Подробнее…

УСТРОЙСТВО СЧЕТОВ

Русские конторские счеты устроены по принципу де­сятичной системы счисления. Это обстоятельство, как мы увидим далее, дает возможность легко производить на счетах все четыре арифметические действия.

Счеты представляют собой деревянную раму с параллельно расположенными на ней тонкими проволочными прутьями, на которых нанизаны по 10 деревянных костяшек, или «косточек», за исключением одного ряда, обычно четвертого, считая от себя, где помещается че­тыре косточки. Обыкновенные конторские счеты бывают чаще всего с 12—14 рядами.

Подробнее…

РАБОТА НА СЧЕТАХ

Перед началом работы на счетах все косточки долж­ны быть сдвинуты вправо.

Числа следует откладывать на счетах начиная с еди­ниц высшего разряда. Рекомендуется при откладывании чисел пользоваться указательным и средним 'пальцами правой руки, а при сбрасывании — большим.

Подробнее…

СЛОЖЕНИЕ

Сложение на счетах производится несколько иначе, чем письменно. На бумаге при сложении нескольких чи­сел последовательно складывают одинаковые разряды всех слагаемых, начиная с низших разрядов.

Подробнее…

СЛОЖЕНИЕ ОДНОЗНАЧНЫХ ЦЕЛЫХ ЧИСЕЛ

При сложении на счетах двух однозначных чисел могут представиться следующие три случая:

  1. Сумма двух слагаемых меньше 10.
  2. Оба слагаемые дают в сумме 10.
  3. Сумма двух слагаемых больше 10.

Сложение двух однозначных чисел, если сумма их не превышает 10, производится простым сдвиганием одного к другому, обоих слагаемых.

Подробнее…

СЛОЖЕНИЕ МНОГОЗНАЧНЫХ ЧИСЕЛ

Как сказано выше, сложение многозначных чисел производится поразрядно. При этом сложение на счетах начинают всегда с высших разрядов.

Пример 1. Сложить 123 + 324.

В этом примере оба слагаемые — трехзначные числа, т. е. имеющие разряды сотен, десятков и единиц. Для сложения их воспользуемся известным нам правилом сложения однозначных чисел, применяя его последова­тельно к одноименным числовым разрядам обоих сла­гаемых, начиная с высших разрядов. Для этого, отло­жив на счетах первое слагаемое 123, прибавим соответ­ственно:

Подробнее…

СЛОЖЕНИЕ ЛЮБОГО ЧИСЛА СЛАГАЕМЫХ

До сих пор для большей ясности изложения мы рас­сматривали сложение только двух каких-либо чисел. Если надо найти сумму не двух, а большего числа сла­гаемых, то поступают так: сперва складывают два числа,, затем к полученной сумме прибавляют третье и т. д., т. е. к первому числу последовательно прибавляют все остальные.

Подробнее…

СЛОЖЕНИЕ ДЕСЯТИЧНЫХ ДРОБЕЙ

Способ сложения на счетах десятичных дробей ана­логичен сложению целых чисел, с той лишь разницей,, что при сложении десятичных дробей надо иметь в виду запятую, отделяющую десятичные знаки от целых.

Подробнее…

ВЫЧИТАНИЕ

Вычитание, как известно, есть действие обратное сло­жению. Поэтому на счетах вычитание производится при помощи приемов, обратных тем, какие применяются при сложении чисел.

Подробнее…

ВЫЧИТАНИЕ ЦЕЛЫХ ЧИСЕЛ

Изучение сложения на счетах мы начали с рассмот­рения трех различных случаев сложения однозначных чисел. При изучении вычитания можно ограничиться лишь двумя случаями, а именно: 1) вычитаемое меньше уменьшаемого или равно ему; 2) вычитаемое больше уменьшаемого.

Пример 1. Найти разность 8 — 5.

Откладываем на счетах уменьшаемое 8 и рассу­ждаем так: вычитание есть такое арифметическое действие, при помощи которого по сумме и одному из слагаемых находится другое слагаемое.

В данном случае уменьшаемое 8 является суммой двух слагаемых, одно из которых есть число 5. Для Нахождения второго сла­гаемого очевидно надо сбросить со стоящего на счетахуменьшаемого первое слагаемое.

В результате получим искомую разность — число 3.

Подробнее… |

Источник: https://propedagog.ru/tekhnika-vychislenij-na-schetakh

Как считать на древних счетах: тренируем мозги

Как научиться считать на счетах

13.09.2018

7

49727

Счёты это вещь, которую уже мало кто помнит. Теперь мир заполонили калькуляторы, ноутбуки и мобильные телефоны. Однако такой давно забытый предмет как счёты очень удобны и нужны людям, о чем сейчас мало кто знает.

История древних счёт

Давным-давно, около 5000 лет назад, в Месопотамии и Древней Греции появилась счетная доска для арифметических вычислении. Она состояла из:

  • Рамки
  • Поперечной перекладины (планки)
  • Спиц, проходящих сквозь перекладину
  • Косточек, нанизанных на спицы

На каждой спице было нанизано по пять косточек. Одна косточка находилась над перекладиной(планкой), а четыре под ней.

Такие счеты назывались Абак. Со временем они были усовершенствованы в Китае и Японии и стали назваться Суаньпань и Соробан. Спустя какое-то время Абак стали называть Абакусом. Вместе с Ментальной арифметикой, для которой Абакус является основным инструментом, Абакус пришел в Россию.

Учимся считать на счётах

Ментальная арифметика это уникальный курс для развития умственных способностей и творческого потенциала за счёт вычисления на абакусе. Во время обучения у детей гармонично развиваются оба полушария головного мозга, благодаря чему все школьные предметы даются ребёнку с лёгкостью. Она учит ребенка, как считать на счетах.

Научится считать на счётах абакус не очень сложно. Главное ; это тренироваться каждый день, выполнять домашнее задание и верить в себя. Несмотря на доказанные результаты, некоторые родители сомневаются, стоит ли отдавать ребёнка на ментальную арифметику.

Ведь у него большая нагрузка в школе, репетиторы, плюс он ходит на легкую атлетику.

Будет ли малыш всё успевать? Прелесть этой методики в том, что она поможет ребёнку быстрее делать домашнее задание, правильно распределять время, сформировать уверенность в себе.

Смысл данной программы ; тренировка головного мозга для максимальной скорости восприятия и обработки информации. На занятиях по ментальной арифметике дети сначала учатся, как считать на счётах абакус, механически перебирая косточки. Потом ученики представляют счёты в уме и пытаются считать на ментальных счётах.

Учим ребёнка считать на счётах абакус

В школе у ребят развивают в большинстве своём левое полушарие мозга, которое отвечает за логику, речь, мелкую моторику и аналитические операции. Занимаясь же ментальной арифметикой, у ребёнка вместе с левым полушарием одновременно развивается и правое. Последнее ответственно за воображение, образное мышление, фантазию.

Оптимальный возраст для обучения от 5 лет. Существуют курсы и для подростков 13-16 лет. Но лучше начать ходить на занятия, когда ребёнок находится ещё в дошкольном возрасте. Потому что тогда у него мозг очень пластичный и занятия проходят более успешно.

На занятиях по ментальной арифметике мы учим ребенка считать на счётах. Благодаря этой методике у ребёнка развивается воображение. От этого появляется любовь к чтению. Научившись быстро считать, малыш завоюет авторитет в детском саду и школе, что поднимет его в глазах одноклассников и сформирует лидерские качества.

Преимущества ментальной арифметики для детей

  1. Формирование мелкой моторики рук за счёт перебирания косточек на абакусе.
  2. Гармоничное развитие левого и правого полушарий головного мозга за счёт работы на абакусе обоих рук.
  3. Тренировка зрительной памяти, потому что ребенок проводит в уме сложные арифметические операции.
  4. Получение такого навыка как быстрый устный счёт.

    Ребенок сможет решать примеры с многозначными числами быстрее калькулятора.

  5. Подход к решению любых задач двумя способами: аналитическим и творческим.
  6. Развитие сосредоточенности, концентрации внимания, образного мышления, воображения, наблюдательности.
  7. Умение быстро принимать решения и повышение уровня ответственности.

Положительное влияние ментальной арифметики

С помощью абакуса малыш через год-два сможет умножить и делить многозначные числа в уме. Некоторые родители волнуются, а не будет ли мозг их ребенка излишне загружен? Будет ли в нём место для другой полезной информации?

Бояться не стоит. Ментальная арифметика входит в официальную школьную программу почти во всех учебных заведениях Азии. И как отмечает история, у детей складывается только положительная динамика:

  • Усиление зрительной и слуховой памяти;
  • Увеличение концентрации внимания;
  • Активизация смекалки и интуиции;
  • Возникновение самостоятельности и уверенности;
  • Формирование нестандартного мышления;
  • Получение хорошего высшего образования и престижной работы;
  • Изучение иностранных языков;
  • Развитие творческих способностей.

Глядя на этот список, становится не совсем ясно, как математика влияет на всё выше перечисленное. Но в этом и есть особенность этой уникальной методики. Вычисления на абакусе помогают сформировать связь между двумя полушариями мозга.

https://www.youtube.com/watch?v=Etoe5t67Z7U

Правое отвечает за:

  • интуицию
  • образное мышление
  • воображение
  • способность к творчеству
  • понимание подтекста
  • ориентацию в пространстве
  • музыкальный слух
  • обработку материала из нескольких источников сразу

Левое отвечает за:

  • речь
  • чтение
  • письмо
  • память
  • логику
  • рациональное мышление
  • числа и символы
  • последовательность событий

А совместная деятельность обоих полушария и даёт такой впечатляющий эффект.

Источник: https://amakids.ru/about_us/blog/mentalnaya-arifmetika/kak-schitat-na-drevnih-schetah-treniruem-mozgi/

Русские счеты: история, правила счета. Как считать на счетах?

Как научиться считать на счетах

Русские счеты более пяти веков добросовестно служили людям, помогая быстрее совершать простые арифметические действия. Удобно и быстро складывать доходы и вычитать из них расходы. Приемы, упрощающие умножение, давались не всем и часто заменялись привычным сложением, а деление было уделом «избранных» и значительно быстрее выполнялось на бумаге.

Счеты в принципе работают только с положительными числами, и если есть необходимость учитывать превышение расходов над доходами (убытки), то расчеты ведутся по модулю числа. Соответствующий знак запоминается или записывается на бумаге, а в необходимый момент вставляется в число.

При действиях по умножению и делению нить (проволока, стержень, прут) с 4 косточками – разделитель разрядов (далее по тексту РР) не учитывается, даже если приходится работать с дробями (они преобразуются в целые числа, а после окончания вычислений производится обратная процедура).

Русские счеты – история

Итак, что это такое? Русские счеты — это простейшее механичное устройство для осуществления вычислений. Это сложение, вычитание, деление и умножение. Имеют место две теории появления счет на Руси:

  • Заимствование их у китайцев через посредников в лице татаро-монголов в XIV веке нашей эры. Как раз за столетие перед появлением у нас «предков» деревянных счет в Китае они приобрели окончательный вид счетного устройства. Правда они имели 8, а не десять разрядов и 7 косточек, разделенных перегородкой в соотношении 5 и 2. Но русскому человеку только дай что-нибудь усовершенствовать – результат усовершенствования будет отличаться от источника как небо и земля.
  • Согласно другой теории, простые счеты – истинно русское изобретение. Они как раз и основываются на десятеричной системе счисления (в Китае в то время была принята пятеричная), которая возникла в Московском государстве, в том числе с XVI века распространилась и на денежную сферу. Имеются документально оформленные ссылки на «дощаный счет» (XVI век).

Как оно было на самом деле, история умалчивает. Но «дощаный» счет до середины XVII века (пока не победил) конкурировал с европейской системой счета на линованных досках типа абак, где он происходил при помощи камешков или специальных жетонов.

Образец – это старые деревянные счеты. Они имеют 12 поперечных проволочек-прутов (РР отделяет 8 верхних от 3 нижних) с десятью костяшками белого цвета, кроме двух черных посередине на 11 из них (на РР – 4 костяшки). Таким образом, русские счеты могут зафиксировать любое число до 10 миллионов. А если исключить РР, то до 10 миллиардов.

Итак, как считать на счетах? Откладывание чисел производится перемещением костяшек из правого в левое положение, а при наборе слева 10 косточек – они убираются в исходное положение.

В следующем разряде в левое положение переводится всего лишь одна косточка.

РР отделяет целые числа (сверху) от их соответственно десятых, сотых и тысячных долей и в расчетах участие не принимает (ранее использовался для учета «полушек», которая равнялась ½ «деньги» или ¼ копейки).

Счеты бухгалтерские

Они получили массовое распространение в XIX-XX веках, пока их не вытеснили ЭКВМ (электронно-клавишные вычислительные машины). Кстати, этого не смогли сделать арифмометры, которые считали намного быстрее, но работа на них требовала специальной и довольно сложной подготовки по овладению навыками работы на них, в отличии от счет, обучить работе на которых было в разы легче и быстрее.

Вообще-то искусство работы на бухгалтерских счетах и состоит в том, чтобы знать все способы достижения точного результата действий путем разложения общего на частные более легкие операции.

Например, умножение на 25 заменяется умножением на 100 и двукратным последовательным делением результата на 2.

Или, как умножение, так и деление на любую степень числа 2 производится последовательным соответствующим действием, число которых равно этой степени.

Как считать на счетах? Другой пример. Умножение на двузначное число из одинаковых цифр «АА» (11, 22 и так далее) заменяется умножением на «А» с переносом результата на разряд вверх (умножение на 10) и сложения этой суммы с предыдущей. От опыта и подготовки человека, работающего на счетах, метода его обучения и зависит скорость вычислений, а также применение им специальных приемов.

Сложение

Сложение на счетах – самая легкая операция. Набирается первое число, потом к нему добавляются костяшки, обозначающее третье и так далее. Надо соблюдать только одно условие.

При нехватке косточек для перемещения их в левый ряд – именно столько косточек необходимо оставить в этом ряду, после чего и переместить одну костяшку влево на верхнем пруте.

Выполнение происходит сверху вниз (профессионалы могут и наоборот) и складываются только равные разряды (единицы с единицами, десятки с десятками и так далее).

Вычитание

Как выполняется вычитание на счетах? Помня, что счеты не работают с отрицательными числами, всегда надо иметь в виду, что вычитание производится из числа более крупного. А если надо сделать наоборот, то все-таки меньшее вычитается из большего, а знак запоминается или записывается.

Вычитание на русских счетах производится сверху-вниз, то есть от высших разрядов к низшим.

На соответствующей проволоке отбрасывается вправо необходимое число косточек и если их не хватает, то одна косточка переносится вправо в старшем разряде, а на данной проволочке все переносится влево и из них убирается вправо необходимое число.

Умножение

Теперь про умножение на счетах. Древние счеты способствуют повышению скорости проведения действий по умножению, которая значительно превосходит скорость осуществления тех же действий на бумаге. На практике умножение – это многократное сложение искомого с самим собой в числовом выражении. Несколько советов:

  • За основу лучше принять большее число, тогда операций будет произведено меньше. Умножение начинается с низшего разряда и идет вверх.
  • Складывается число само с собой столько раз, сколько «значит» число в этом разряде (о способах сокращения числа этих операций расскажем в конце настоящего раздела). При переходе к следующему разряду, результат переносится на один прут выше (умножается на 10). И опять та же процедура. Если в разряде «0», то перенос на старший прут происходит, а сложение – нет, и необходимо переходить к дальнейшей процедуре умножения.
  • Дробные числа перемножаются как целые, а соответствующий разделитель ставится в итоге всех действий вручную на бумаге.

Способы, упрощающие процесс умножения:

  • На 4 – двукратное удвоение.
  • На 5 – перенесение на один разряд выше и деление результата на 2.
  • На 6 – умножение на 5 плюс начальное число.
  • На 7 – троекратное удвоение и минус начальное число.
  • На 9 – перенесение на один разряд выше и минус начальное число.

Деление

Как умножение заменяется многократным сложением, так и деление на счетах – это постоянное вычитание. Начинается все с верхнего разряда и идет вниз.

Переносится направо число косточек, равных делителю (каждый раз, как это удается на самой верхней проволочке, переносится одна косточка налево) до тех пор, пока слева не окажется косточек меньше чем число, на которое производится деление (делитель).

Затем к процессу подключается нижеследующий разряд. И если в предыдущей проволочке остались косточки, то вычитается делитель уже из двузначного числа. Если нет, то, как в предыдущий раз. Если в низшем разряде вычитание пройдет без остатка косточек слева, то значит деление произведено без остатка.

Если слева косточки остались, то в случае необязательного получения в итоге дробного числа – остаток игнорируется, а если обязательно его получение, то вычитание продолжается до нужной точности на прутьях ниже РР, с указанием дробного разделителя на бумаге. Аналогично производится деление на двухзначные, трехзначные (и т. д.

) числа, только сначала вычитание идет из соответственно двух, трех и так далее высших разрядов.

Способы, упрощающие процесс деления:

  • На 2 – процесс протекает в обратном порядке – снизу-вверх. На каждом пруте отбрасывается половина косточек, а «лишняя», при их нечетном числе, тоже отбрасывается. В нижнем разряде за это влево переносится 5 косточек.
  • На 4 – дважды произведенное деление на 2.
  • На 5 – перенос всего числа на один прут вниз (деление на 10) и умножение его на 2.
  • На 8 – трижды произведенное деление на 2.
  • На 9 – перенесение на один разряд выше и минус начальное число.

Усовершенствование

На протяжении четверти тысячелетия популярности и практической необходимости счет неоднократно предпринимались (часто закончившиеся удачно), попытки усовершенствовать русские счеты. Остановимся только на одной из них. В 1828 г. генерал-майор Ф. М.

Свободский представил в соответствующую инстанцию счетный прибор, который не только осуществлял привычные для русских счет действия, но достаточно быстро извлекал кубические корни, возводил числа в степень, вычислял сложные проценты и так далее.

Достигалось это только методами сложения и вычитания с фиксацией промежуточных результатов на специальном поле счет.

Однако скорость получения искомого результата так поразила комиссию, что она рекомендовала данный прибор к производству и введению специального курса в военных заведениях. Но до реального исполнения решения дело не дошло.

В настоящее время в России счеты применяются только в качестве музейного экспоната или семейной реликвии.

Очень редко, если они наличествуют у кого-то в доме, могут использоваться подрастающим поколением для катания по полу, или старшими для массажа ног или спины.

А зря! В современном Китае на «Суаньпань» учат учеников младших классов, так как считается, что освоивший такой способ счета ребенок развивается лучше и быстрее, не научившегося работать на этом древнем приспособлении.

Источник: https://FB.ru/article/401487/russkie-schetyi-istoriya-pravila-scheta-kak-schitat-na-schetah

Устный счет: техника быстрого счета в уме

Как научиться считать на счетах

Зачем считать в уме, если решить любую арифметическую задачу можно на калькуляторе. Современная медицина и психология доказывают, что устный счет – это тренаж для серых клеточек. Выполнять такую гимнастику необходимо для развития памяти и математических способностей.

Известно множество приёмов для упрощения вычислений в уме. Все, кто видел знаменитую картину Богданова-Бельского «Устный счёт», всегда удивляются – как крестьянские дети решают такую непростую задачу, как деление суммы из пяти чисел, которые предварительно ещё надо возвести в квадрат?

Оказывается, эти дети – ученики известного педагога-математика Сергея Александровича Рачицкого (он также изображен на картине). Это не вундеркинды – ученики начальных классов деревенской школы XIX века. Но все они уже знают приёмы упрощения арифметических расчетов и выучили таблицу умножения! Поэтому решить такую задачку этим детишкам вполне под силу!

Секреты устного счёта

Существуют приемы устного счета простые алгоритмы, которые желательно довести до автоматизма. После овладения простыми приёмами можно переходить к освоению более сложных.

Прибавляем числа 7,8,9

Для упрощения вычислений числа 7,8,9 сначала надо округлять до 10, а затем вычитать прибавку. К примеру, чтобы прибавить 9 к двузначному числу, надо сначала прибавить 10, а затем вычесть 1 и т.д.

Примеры:

56+7=56+10-3=63

47+8=47+10-2=55

73+9=73+10-1=82

Быстро складываем двузначные числа

Если последняя цифра двузначного числа больше пяти, округляем его в сторону увеличения. Выполняем сложение, из полученной суммы отнимаем «добавку».

Примеры:

54+39=54+40-1=93

26+38=26+40-2=64

Если последняя цифра двузначного числа меньше пяти, то складываем по разрядам: сначала прибавляем десятки, затем – единицы.

Пример:

57+32=57+30+2=89

Если слагаемые поменять местами, то сначала можно округлить число 57 до 60, а потом вычесть из общей суммы 3:

32+57=32+60-3=89

Складываем в уме трехзначные числа

Быстрый счет и сложение трехзначных чисел – это возможно? Да. Для этого надо разобрать трехзначные числа на сотни, десятки, единицы и поочередно их приплюсовать.

Пример:

249+533=(200+500)+(40+30)+(9+3)=782

Особенности вычитания: приведение к круглым числам

Вычитаемые округляем до 10, до 100. Если надо вычесть двузначное число, надо округлить его до 100, вычесть, а затем к остатку прибавить поправку. Это актуально если поправка невелика.

Примеры:

67-9=67-10+1=58

576-88=576-100+12=488

Вычитаем в уме трехзначные числа

Если в свое время был хорошо усвоен состав чисел от 1 до 10, то вычитание можно производить по частям и в указанном порядке: сотни, десятки, единицы.

Пример:

843-596=843-500-90-6=343-90-6=253-6=247 

Умножить и разделить

Моментально умножать и делить в уме? Это возможно, но без знания таблицы умножения не обойтись. Таблица умножения – это золотой ключик к быстрому счету в уме! Она применяется и при умножении, и при делении. Вспомним, что в начальных классах деревенской школы в дореволюционной Смоленской губернии (картина «Устный счет») дети знали продолжение таблицы умножения – с 11 до 19!

Хотя на мой взгляд достаточно знать таблицу от 1 до 10, чтобы мочь перемножать бо´льшие числа. Например:

15*16=15*10+(10*6+5*6)=150+60+30=240

Умножаем и делим на 4, 6, 8, 9

Овладев таблицей умножения на 2 и на 3 до автоматизма, сделать остальные расчеты будет проще простого.

Для умножения и деления двух- и трехзначных чисел применяем простые приёмы:

  • умножить на 4 – это дважды умножить на 2;
  • умножить на 6 – это значит умножить на 2, а потом на 3;
  • умножить на 8 – это трижды умножить на 2;
  • умножить на 9 – это дважды умножить на 3.

Например:

37*4=(37*2)*2=74*2=148;

412*6=(412*2)·3=824·3=2472

Аналогично:

  • разделить на 4 – это дважды разделить на 2;
  • разделить на 6 – это сначала разделить на 2, а потом на 3;
  • разделить на 8 – это трижды разделить на 2;
  • разделить на 9 – это дважды разделить на 3.

Например:

412:4=(412:2):2=206:2=103

312:6=(312:2):3=156:3=52

Как умножать и делить на 5

Число 5 – это половина от 10 (10:2). Поэтому сначала умножаем на 10, затем полученное делим пополам.

Пример:

326*5=(326*10):2=3260:2=1630

Еще проще правило деления на 5. Сначала умножаем на 2, а затем полученное делим на 10.

326:5=(326·2):10=652:10=65,2.

Умножение на 9

Чтобы умножить число на 9, необязательно его дважды умножать на 3. Достаточно его умножить на 10 и вычесть из полученного умножаемое число. Сравним, что быстрее:

37*9=(37*3)*3=111*3=333

или

37*9=37*10 – 37=370-37=333

Также давно замечены частные закономерности, которые значительно упрощают умножение двузначных чисел на 11 или на 101. Так, при умножении на 11, двузначное число как бы раздвигается. Составляющие его цифры остаются по краям, а в центре оказывается их сумма.

Например: 24*11=264. При умножении на 101, достаточно приписать к двузначному числу такое же. 24*101= 2424. Простота и логичность таких примеров вызывает восхищение.

Встречаются такие задачи очень редко – это примеры занимательные, так называемые маленькие хитрости.

Счет на пальцах

Сегодня еще можно встретить много защитников «пальчиковой гимнастики» и методики устного счета на пальцах.

Нас убеждают, что учиться складывать и отнимать, загибая и разгибая пальцы – это очень наглядно и удобно. Диапазон таких вычислений очень ограничен.

Как только расчеты выходят за рамки одной операции возникают трудности: надо осваивать следующий прием. Да и загибать пальцы в эпоху айфонов как-то несолидно.

Например, в защиту «пальчиковой» методики приводится приём умножения на 9. Хитрость приёма такова:

  • Чтобы умножить любое число в пределах первой десятки на 9, надо развернуть ладони к себе.
  • Отсчитывая слева направо, загнуть палец, соответствующий умножаемому числу. К примеру, чтобы умножить 5 на 9, надо загнуть мизинец на левой руке.
  • Оставшееся количество пальцев слева будет соответствовать десяткам, справа – единицам. В нашем примере – 4 пальца слева и 5 справа. Ответ: 45.

Да, действительно, решение быстрое и наглядное! Но это – из области фокусов. Правило действует только при умножении на 9.  А не проще ли, для умножения 5 на 9 выучить таблицу умножения?  Этот фокус забудется, а хорошо выученная таблица умножения останется навсегда.

Также существует еще множество подобных приемов с применением пальцев для каких-то единичных математических операций, но это актуально пока вы этим пользуетесь и тут же забывается при прекращении применения. Поэтому лучше выучить стандартные алгоритмы, которые останутся на всю жизнь. 

Устный счёт на автомате

  • Во-первых, необходимо хорошо знать состав числа и таблицу умножения.
  • Во-вторых, надо запомнить приемы упрощения расчётов. Как выяснилось, таких математических алгоритмов не так уж много.
  • В-третьих, чтобы приём превратился в удобный навык, надо постоянно проводить краткие «мозговые штурмы» – упражняться в устных вычислениях, используя тот или иной алгоритм.

Тренировки должны быть короткими: решить в уме по 3-4 примера, используя один и тот же приём, затем переходить к следующему. Надо стремиться использовать любую свободную минутку – и полезно, и нескучно. Благодаря простым тренировкам все вычисления со временем будут совершаться молниеносно и без ошибок. Это очень пригодится в жизни и выручит в непростых ситуациях.

Источник: https://myintelligentkids.com/ustnyj-schet-texnika-bystrogo-scheta-v-ume

Как научить ребенка правильно считать на счетах

Как научиться считать на счетах

28.05.2018

6

4466

Раньше счеты были основным рабочим инструментом кассиров, бухгалтеров, продавцов. С их помощью выполнялись арифметические операции с числами малой и большой разрядности. Сегодня калькуляторы и компьютеры вытеснили устройства из массового обихода, но педагоги отмечают пользу обучения детей арифметическим действиям на счетах в рамках дошкольной подготовки и для общего развития.

По признанию журнала Forbes японские счеты абак являются вторым по значимости открытием цивилизации. В Японии и Китае изучение инструмента входит в обязательный школьный курс.

Устройство счетов

Инструмент является самой удачной моделью десятичной системы счисления. Детские счеты изготавливаются с цветными костяшками. Наиболее предпочтительный вариант для развивающих занятий – из дерева. Они легкие, доставляют приятные тактильные ощущения.

Инструмент может иметь 8 или 10 рядов. В первоначальном положении все косточки сдвинуты к правовому краю. Каждый ряд служит для обозначения класса цифр – десятков, сотен тысяч и т. Д. Для набора определенного числа костяшки перемещаются справа налево. Например, чтобы набрать 42:

  • на одном ряду откладывается число десятков, 4;
  • на другом – число единиц – 2.

К освоению арифметических действий можно переходить только после того, как ребенок научится правильно откладывать цифры. Хорошо, если кто-то из родителей сам имеет подобные навыки.

Научиться считать на счетах, а впоследствии быстро выполнять арифметические действия в уме можно, пройдя специальный курс ментальной арифметики.

Программа предполагает использование абакуса как основного инструмента обучения.

Подробное описание действий сложения, вычитания, умножения, деления можно найти в интернет-ресурсах, но практические занятия, судя по многочисленным отзывам, более эффективны, быстрее достигают результата.

Для чего нужны счёты?

Счеты для детей нужны для их интеллектуального развития. Счет на счетах для детей – это отличный способ развить интеллектуальные способности ребенка. Лучшего наглядного представления десятичной системы счисления, чем счеты, человечество не придумало. Перемещая костяшки, можно изучить состав числа, быстро освоить сложение и вычитание. Кроме этого, упражнения со счетами:

  • развивают мелкую моторику;
  • позволяют в игровой форме решать простые примеры;
  • улучшают память;
  • формируют уверенность и самостоятельность у ребенка;
  • стимулируют наблюдательность, усидчивость, сосредоточенность.

Как правильно выбрать счеты?

Счеты деревянные должны быть не очень большими и тяжелыми. Ребенку просто будет неудобно заниматься с подобной игрушкой. Также следует обратить внимание и на размер бусин. Мелкие детали лучше всего развивают мелкую моторику, но при этом значительно затрудняют просмотр. Визуально более удобны бусины больших размеров.

Конечно, игрушка должна быть изготовлена из качественного материала. В противном случае она просто развалится после нескольких использований. Лучше всего покупать счеты деревянные. Они сделаны не только из натурального материала, но и из достаточно надежного.

Если выбираете счеты для совсем маленького ребенка, то они должны быть безопасными. При выборе следует внимательно изучить модель, а также проверить, не соскользнут ли бусины. Некоторые счеты продаются в сочетании с часами. Покупать такую модель или нет – это вы должны решить сами.

Конечно, если ребенок еще не знает, что такое время, то такие счеты будут кстати.

С какого возраста нужно начать обучение счету?

Счеты следует начинать использовать тогда, когда ребенку исполнилось 3 года. В это время уже можно обучать числам от нуля до десяти. Когда новые знания усвоятся, следует усложнить задания. Если же малышу меньше 3-х лет, то он может просто играть со счетами, развивая, таким образом, мелкую моторику.

Как считать на счетах?

Родители должны знать, как научить ребенка считать на счетах. Чтобы знать, как научить ребенка считать на счетах, освоить алгоритм счета сначала должны родители. Вот основные правила:

  • начинают откладывать косточки с нижнего ряда;
  • направление перемещения – справа налево;
  • при сложении вначале набирается одно число, а затем к нему прибавляются разряды второго;
  • если костяшек ряда не хватает, нужно использовать элементы, расположенные на один ряд выше.

Вычитание выполняется по такому же принципу, но начинается с верхних рядов. Вот так нужно считать на детских счетах.

Польза от занятий

Счет на счетах для детей очень полезен. С деревянными счетами можно придумать массу интересных для детей игр, например, в магазин, выкладывание и запоминание орнаментов. В процессе занятий:

  • у детей активно развивается мелкая моторика;
  • легко понимается состав числа;
  • стимулируются творческое мышление и память.

Также счеты помогают:

  • Развить мелкую моторику. Ребенок по дорожкам перемещает бусины, тренируя тем самым пальчики.
  • Познакомить с математикой. Игры со счетами позволяют познакомить ребенка с цифрами, а также с решением несложных примеров.
  • Развить фантазию и память. Счеты деревянные позволяют сделать любое занятие более интересным. Можно рассказывать сказки о том, как разноцветные бусинки ходили по дорожкам, а можно развивать у ребенка наблюдательность, добавляя и убавляя бусины.
  • Развить усидчивость. Как правило, маленькие дети очень шустрые. Им сложно усидеть на одном месте. Однако, играя со счетами, ребенок постепенно сможет привыкнуть к сидению на одном месте более пяти минут.

Упражнения со счетами – отличный бюджетный вариант подготовки ребенка к школе. Придя в первый класс с основными математическими навыками, они не будут испытывать трудностей при освоении главной точной науки.

Источник: https://smartum.by/about_us/blog/mentalnaya-arifmetika/kak-nauchit-rebenka-schitat-na-schetakh/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.