Как перевести в десятичную систему счисления

Содержание

Системы счисления. Перевод систем счисления

Как перевести в десятичную систему счисления

Разберем одну из важнейших тем по информатике – Системы счисления. В школьной программе она раскрывается довольно “скромно”, скорее всего, из-за недостатка отведенных на нее часов.

Знания по этой теме, особенно на перевод систем счисления, являются обязательным условием для успешной сдачи ЕГЭ и поступления в ВУЗы на соответствующие факультеты.

Ниже подробным образом рассмотрены такие понятия, как позиционные и непозиционные системы счисления, даны примеры этих систем счисления, представлены правила перевода целых десятичных чисел, правильных десятичных дробей и смешанных десятичных чисел в любую другую систему счисления, перевода чисел из любой системы счисления в десятичную, перевода из восьмеричной и шестнадцатиричной систем счисления в двоичную систему счисления. На экзаменах в большом количестве встречаются задачи по данной теме. Умение их решать – одно из требований к абитуриентам. Скоро: По каждой теме раздела, помимо подробного теоретического материала, будут представлены практически все возможные варианты задач для самостоятельного изучения. Кроме того, у вас появится возможность совершенно бесплатно скачать с файлообменника уже готовые подробные решения к данным задачам, иллюстрирующие различные способы получения верного ответа.

Непозиционные системы счисления

Непозиционные системы счисления – системы счисления, в которых количественное значение цифры не зависит от ее местоположения в числе.

К непозиционным системам счисления относится, например, римская, где вместо цифр – латинские буквы.

I1 (один)
V5 (пять)
X10 (десять)
L50 (пятьдесят)
C100 (сто)
D500 (пятьсот)
M1000 (тысяча)

Здесь буква V обозначает 5 независимо от ее местоположения. Однако стоит упомянуть о том, что хотя римская система счисления и является классическим примером непозиционной системы счисления, не является полностью непозиционной, т.к. меньшая цифра, стоящая перед большей, вычитается из нее:

IL49 (50-1=49)
VI6 (5+1=6)
XXI21 (10+10+1=21)
MI1001 (1000+1=1001)

Позиционные системы счисления

Позиционные системы счисления – системы счисления, в которых количественное значение цифры зависит от ее местоположения в числе.

Например, если говорить о десятичной системе счисления, то в числе 700 цифра 7 означает “семь сотен”, но эта же цифра в числе 71 означает “семь десятков”, а в числе 7020 – “семь тысяч”.

Каждая позиционная система счисления имеет свое основание. В качестве основания выбирается натуральное число, большее или равное двум. Оно равно количеству цифр, используемых в данной системе счисления.

    Например:

  • Двоичная – позиционная система счисления с основанием 2.
  • Четверичная – позиционная система счисления с основанием 4.
  • Пятиричная – позиционная система счисления с основанием 5.
  • Восьмеричная – позиционная система счисления с основанием 8.
  • Шестнадцатиричная – позиционная система счисления с основанием 16.

Чтобы успешно решать задачи по теме “Системы счисления”, ученик должен знать наизусть соответствие двоичных, десятичных, восьмеричных и шестнадцатиричных чисел до 1610:

10 с/с2 с/с8 с/с16 с/с
0000
1111
21022
31133
410044
510155
611066
711177
81000108
91001119
10101012A
11101113B
12110014C
13110115D
14111016E
15111117F
16100002010

Полезно знать, как получаются числа в этих системах счисления. Можно догадаться, что в восьмеричной, шестнадцатиричной, троичной и других позиционных системах счисления все происходит аналогично привычной нам десятичной системе:

К числу прибавляется единица и получается новое число. Если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1 и т.д.

Этот “переход единицы” как раз и пугает большинство учеников. На самом же деле все довольно просто. Переход происходит, если разряд единиц становится равен основанию системы счисления, мы увеличиваем число десятков на 1. Многие, помня старую добрую десятичную систему моментально путаются в разряда и в этом переходе, ведь десятичный и, например, двоичный десятки – разные вещи.

Отсюда у находчивых учеников появляются “свои методики” (на удивление… работающие) при заполнении, например, таблиц истинности, первые столбцы (значения переменных) которых, фактически, заполняются двоичными числами в порядке возрастания.

Для примера разберем получение чисел в восьмеричной системе: К первому числу (0) прибавляем 1, получаем 1. Затем к 1 прибавляем 1, получаем 2 и т.д. до 7.

Если мы прибавим к 7 единицу, получим число равное основанию системы счисления, т.е. 8. Тогда нужно увеличить на единицу разряд десятков (получаем восьмеричный десяток – 10).

Далее, очевидно, идут числа 11, 12, 13, 14, 15, 16, 17, 20, …, 27, 30, …, 77, 100, 101…

Правила перевода из одной системы счисления в другую

Далее последовательно разбирается перевод систем счисления.

1. Перевод целых десятичных чисел в любую другую систему счисления

Число нужно разделить на новое основание системы счисления. Первый остаток от деления – это и есть первая младшая цифра нового числа.

Если частное от деления меньше или равно новому основанию, то его (частное) нужно снова разделить на новое основание. Деление нужно продолжать, пока не получим частное меньше нового основания.

Это есть старшая цифра нового числа (нужно помнить, что, например, в шестнадцатиричной системе после 9 идут буквы, т.е. если в остатке получили 11, нужно записать его как B).

Пример (“деление уголком”): Переведем число 17310 в восьмеричную систему счисления.

Таким образом, 17310=2558

2. Перевод правильных десятичных дробей в любую другую систему счисления

Число нужно умножить на новое основание системы счисления. Цифра, перешедшая в целую часть – старшая цифра дробной части нового числа.

для получения следующей цифры дробную часть получившегося произведения опять нужно умножать на новое основание системы счисления, пока не произойдет переход в целую часть.

Умножение продолжаем, пока дробная часть не станет равна нулю, либо пока не дойдем до указанной в задаче точности (“… вычислить с точностью, например, двух знаков после запятой”).

Пример: Переведем число 0,6562510 в восьмеричную систему счисления.

Таким образом, 0,6562510=0,528

3. Перевод смешаных десятичных чисел в любую другую систему счисления

Переводим отдельно целую часть, отдельно дробную – записываем в одно число.

Пример: Переведем число 17,2510 в восьмеричную систему счисления.

По аналогии с пунктом 1: 1710 = 218

По аналогии с пунктом 2: 0,2510 = 0,28

“Склеиваем” два числа и получаем ответ: 17,2510 = 21,28.

4. Перевод чисел из любой системы счисления в десятичную

Числа необходимо представить в разложении по степеням той системы счисления, в которой находится число, при чем цифры числа необходимо записать в десятичном эквиваленте. Найти арифметическую сумму.

Пример: Переведем число 1011,012 в десятичную систему счисления.

1) Чтобы представить число в разложении по степеням, нужно найти запятую и проставить “карандашиком” влево и вправо от запятой степени над цифрами числа (слева – неотрицательные степени, т.е. начинаем с нуля; справа – отрицательные, начиная с -1):

13 02 11 10, 0-1 1-22

2) Далее умножаем каждую цифру на основание системы счисления, в которой находится число, возведенное в соответствующую “подписанную” степень (помним, что любое число в нулевой степени – это единица):

1011,012 = 1*23 + 0*22 + 1*21 + 1*20 + 0*2-1 + 1*2-2 =
= 8 + 0 + 2 + 1 + 0 + 1/22 = 11 + 1/4 = 11 + 0,25 = 11,2510

Ответ: 11,2510.

5. Перевод чисел из восьмеричной системы счисления в двоичную

Каждую цифру восьмеричного числа нужно заменить соответствующей двоичной триадой ( * * * ) – например, для цифры 7 – 111, для 3 – 011. Незначащие нули можно отбросить.

Пример: Переведем число 274,068 в двоичную систему счисления.

Просто заменяем все числа триадами:

2 7 4, 0 6 -> 010 111 100, 000 110

274,068 = 10111100,000112

Ответ: 10111100,000112.

6. Перевод чисел из двоичной системы счисления в восьмеричную

Несложно догадаться, что на этот раз мы просто разбиваем число на триады и заменяем восьмеричными цифрами (помним, что разбивать начинаем “от запятой” влево и вправо; там, где не хватает дополняем незначащими нулями).

Пример: Переведем число 1111,01100112 в восьмеричную систему счисления.

Разбиваем на триады и заменяем:

001'111,011'001'100 -> 1'7,3'1'4

1111,01100112 = 17,3148

Ответ: 17,3148.

Откуда же появились эти “триады”?

Да это же степень, в которую нужно возвсти двойку, чтобы получить основание 8!

Очевидно, что для шестнадцатиричной системы счисления появятся тетрады (“тетра” – четыре) и т.д.

4 = 22
8 = 23Триады
16 = 24Тетрады
32 = 25

7. Перевод чисел из двоичной системы счисления в шестнадцатиричную и обратно

Перевод чисел из двоичной системы счисления в шестнадцатиричную и обратно выглядит так же, как и для пути “восьмеричная двоичная”. Отличие состоит лишь в использовании тетрад ( * * * * ).

Пример: Переведем число CD2,0416 в двоичную систему счисления.

Разбиваем и заменяем:

C'D'2, 0'4 -> 1100'1101'0010, 0000'0100

CD2,0416 = 110011010010,0000012

Ответ: 110011010010,0000012.

Источник: http://akak-ich.ru/inf-sys_sch.php

Перевод чисел из одной системы счисления в другую

Как перевести в десятичную систему счисления

Данный конвертер переводит числа между наиболее популярными системами счисления: десятичной, двоичной, восьмеричной, шестнадцатеричной.

Система счисления – это способ представления числа. Одно и то же число может быть представлено в различных видах. Например, число 200 в привычной нам десятичной системе может иметь вид 11001000 в двоичной системе, 310 в восьмеричной и C8 в шестнадцатеричной.

Существуют и другие системы счисления, но мы не стали включать их в конвертер из-за низкой популярности.

Для указания системы счисления при записи числа используется нижний индекс, который ставится после числа:
20010 = 110010002 = 3108 = C816

Кратко об основных системах счисления

Десятичная система счисления. Используется в повседневной жизни и является самой распространенной. Все числа, которые нас окружают представлены в этой системе. В каждом разряде такого числа может использоваться только одна цифра от 0 до 9.

Двоичная система счисления. Используется в вычислительной технике. Для записи числа используются цифры 0 и 1.

Восьмеричная система счисления. Также иногда применяется в цифровой технике. Для записи числа используются цифры от 0 до 7.

Шестнадцатеричная система счисления. Наиболее распространена в современных компьютерах. При помощи неё, например, указывают цвет. #FF0000 – красный цвет. Для записи числа используются цифры от 0 до 9 и буквы A,B,C,D,E,F, которые соответственно обозначают числа 10,11,12,13,14,15.

Перевод в десятичную систему счисления

Преобразовать число из любой системы счисления в десятичную можно следующим образом: каждый разряд числа необходимо умножить на Xn, где X – основание исходного числа, n – номер разряда. Затем суммировать полученные значения.

abcx = (a*x2 + b*x1 + c*x0)10

Примеры:

5678 = (5*82 + 6*81 + 7*80)10 = 37510

1102 = (1*22 + 1*21 + 0*20)10 = 610

A516 = (10*161 + 5*160)10 = 16510

Перевод из десятичной системы счисления в другие

Делим десятичное число на основание системы, в которую хотим перевести и записываем остатки от деления. Запишем полученные остатки в обратном порядке и получим искомое число.

Переведем число 37510 в восьмеричную систему:

375 / 8 = 46 (остаток 7)

46 / 8 = 5 (остаток 6)

5 / 8 = 0 (остаток 5)

Записываем остатки и получаем 5678

Перевод из двоичной системы в восьмеричную

Способ 1:

Для перевода в восьмеричную систему нужно разбить двоичное число на группы по 3 цифры справа налево. В последней (самой левой) группе вместо недостающих цифр поставить слева нули. Для каждой полученной группы произвести умножение каждого разряда на 2n, где n – номер разряда.

11012 = (001) (101) = (0*22 + 0*21 + 1*20) (1*22 + 0*21 + 1*20) = (0+0+1) (4+0+1) = (1) (5) = 158

Способ 2:

Так же как и в первом способе разбиваем число на группы. Но вместо преобразований в скобках просто заменим полученные группы (триады) на соответствующие цифры восьмеричной системы, используя таблицу триад:

Триада

Цифра

000001010011100101110111
01234567

101110102 = (010) (111) (010) = 2728

Способ 1:

Разбиваем число на группы по 4 цифры справа налево. Последнюю (левую) группу дополним при необходимости ведущими нулями. Внутри каждой полученной группы произведем умножение каждой цифры на 2n, где n – номер разряда, и сложим результаты.

110102 = (0001) (1010) = (0*23 + 0*22 + 0*21 + 1*20) (1*23 + 0*22 + 1*21 + 0*20) = (0+0+0+1) (8+0+2+0) = (1) (10) = 1A16

Способ 2:

Также как и в первом способе разбиваем число на группы по 4 цифры. Заменим полученные группы (тетрады) на соответствующие цифры шестнадцатеричной системы, используя таблицу тетрад:

Тетрада

Цифра

0000000100100011010001010110011110001001101010111100110111101111
0123456789ABCDEF

1011111002 = (0001) (0111) (1100) = 17C16

Способ 1:

Каждый разряд восьмеричного числа будем делить на 2 и записывать остатки в обратном порядке, формируя группы по 3 разряда двоичного числа. Если в группе получилось меньше 3 разрядов, тогда дополняем нулями. Записываем все группы по порядку, отбрасываем ведущие нули, если имеются, и получаем двоичное число.

Возьмем число 438. Делим последовательно 4 на 2 и получаем остатки 0,0,1. Записываем их в обратном порядке. Получаем 100. Делим последовательно 3 на 2 и получаем остатки 1,1. Записываем их в обратном порядке и дополняем ведущими нулями до трех разрядов. Получаем 011.

Записываем вместе и получаем 1000112

Способ 2:

Используем таблицу триад:

Цифра

Триада

01234567
000001010011100101110111

Каждую цифру исходного восьмеричного числа заменяется на соответствующие триады. Ведущие нули самой первой триады отбрасываются.

3518 = (011) (101) (001) = 0111010012 = 111010012

Способ 1:

Аналогично переводу из восьмеричной в двоичную, только группы по 4 разряда.

Способ 2:

Используем таблицу тетрад:

Цифра

Тетрада

0123456789ABCDEF
0000000100100011010001010110011110001001101010111100110111101111

Каждую цифру исходного числа заменяется на соответствующие тетрады. Ведущие нули самой первой тетрады отбрасываются.

D816 = (1101) (1000) = 110110002

Такую конвертацию можно осуществить через промежуточное десятичное или двоичное число. То есть исходное число сначала перевести в десятичное (или двоичное), и затем полученный результат перевести в конечную систему счисления.

Источник: https://calcus.ru/perevod-sistem-schisleniya

Перевод чисел в различные системы счисления с решением | Онлайн калькулятор

Как перевести в десятичную систему счисления

  • /
  • Калькуляторы
  • /
  • Перевод чисел в различные системы счисления

Калькулятор позволяет переводить целые и дробные числа из одной системы счисления в другую. Основание системы счисления не может быть меньше 2 и больше 36 (10 цифр и 26 латинских букв всё-таки). Длина чисел не должна превышать 30 символов.

Для ввода дробных чисел используйте символ . или ,.

Чтобы перевести число из одной системы в другую, введите исходное число в первое поле, основание исходной системы счисления во второе и основание системы счисления, в которую нужно перевести число, в третье поле, после чего нажмите кнопку “Получить запись”.

Исходное числозаписано в23456789101112131415161718192021222324252627282930313233343536-ой системе счисления.

Хочу получить запись числа в23456789101112131415161718192021222324252627282930313233343536-ой системе счисления.

Получить запись

=

Выполнено переводов: 3436065

Также может быть интересно:

Системы счисления делятся на два типа: позиционные и не позиционные. Мы пользуемся арабской системой, она является позиционной, а есть ещё римская − она как раз не позиционная. В позиционных системах положение цифры в числе однозначно определяет значение этого числа. Это легко понять, рассмотрев на примере какого-нибудь числа.

Пример 1. Возьмём число 5921 в десятичной системе счисления. Пронумеруем число справа налево начиная с нуля:

Число 5921 можно записать в следующем виде: 5921 = 5000+900+20+1 = 5·103+9·102+2·101+1·100. Число 10 является характеристикой, определяющей систему счисления. В качестве степеней взяты значения позиции данного числа.

Пример 2. Рассмотрим вещественное десятичное число 1234.567. Пронумеруем его начиная с нулевой позиции числа от десятичной точки влево и вправо:

Число:1234567
Позиция:3210-1-2-3

Число 1234.567 можно записать в следующем виде: 1234.567 = 1000+200+30+4+0.5+0.06+0.007 = 1·103+2·102+3·101+4·100+5·10-1+6·10-2+7·10-3.

Перевод чисел из одной системы счисления в другую

Наиболее простым способом перевода числа с одной системы счисления в другую, является перевод числа сначала в десятичную систему счисления, а затем, полученного результата в требуемую систему счисления.

Перевод чисел из любой системы счисления в десятичную систему счисления

Для перевода числа из любой системы счисления в десятичную достаточно пронумеровать его разряды, начиная с нулевого (разряд слева от десятичной точки) аналогично примерам 1 или 2. Найдём сумму произведений цифр числа на основание системы счисления в степени позиции этой цифры:

1. Перевести число 1001101.11012 в десятичную систему счисления.
Решение: 10011.11012 = 1·24+0·23+0·22+1·21+1·20+1·2-1+1·2-2+0·2-3+1·2-4 = 16+2+1+0.5+0.25+0.0625 = 19.812510
Ответ: 10011.11012 = 19.812510

2. Перевести число E8F.2D16 в десятичную систему счисления.
Решение: E8F.2D16 = 14·162+8·161+15·160+2·16-1+13·16-2 = 3584+128+15+0.125+0.05078125 = 3727.1757812510
Ответ: E8F.2D16 = 3727.1757812510

Перевод чисел из десятичной системы счисления в другую систему счисления

Для перевода чисел из десятичной системы счисления в другую систему счисления целую и дробную части числа нужно переводить отдельно.

Перевод целой части числа из десятичной системы счисления в другую систему счисления

Целая часть переводится из десятичной системы счисления в другую систему счисления с помощью последовательного деления целой части числа на основание системы счисления до получения целого остатка, меньшего основания системы счисления. Результатом перевода будет являться запись из остатков, начиная с последнего.

3. Перевести число 27310 в восьмиричную систему счисления.
Решение: 273 / 8 = 34 и остаток 1, 34 / 8 = 4 и остаток 2, 4 меньше 8, поэтому вычисления завершены. Запись из остатков будет иметь следующий вид: 421
Проверка: 4·82+2·81+1·80 = 256+16+1 = 273 = 273, результат совпал. Значит перевод выполнен правильно.
Ответ: 27310 = 4218

Рассмотрим перевод правильных десятичных дробей в различные системы счисления.

Перевод дробной части числа из десятичной системы счисления в другую систему счисления

Напомним, правильной десятичной дробью называется вещественное число с нулевой целой частью.

Чтобы перевести такое число в систему счисления с основанием N нужно последовательно умножать число на N до тех пор, пока дробная часть не обнулится или же не будет получено требуемое количество разрядов.

Если при умножении получается число с целой частью, отличное от нуля, то целая часть дальше не учитывается, так как последовательно заносится в результат.

4. Перевести число 0.12510 в двоичную систему счисления.
Решение: 0.125·2 = 0.25 (0 – целая часть, которая станет первой цифрой результата), 0.25·2 = 0.5 (0 – вторая цифра результата), 0.5·2 = 1.0 (1 – третья цифра результата, а так как дробная часть равна нулю, то перевод завершён).
Ответ: 0.12510 = 0.0012

Источник: https://programforyou.ru/calculators/number-systems

Перевод чисел в различные системы счислений

Как перевести в десятичную систему счисления

Когда занимаешься настройками сетей различного масштаба и каждый день сталкиваешься с вычислениями – то такого рода шпаргалки заводить не обязательно, все и так делается на безусловном рефлексе.

Но когда в сетях ковыряешься очень редко, то не всегда вспомнишь какая там маска в десятичной форме для префикса 21 или же какой адрес сети при этом же префиксе.

В связи с этим я и решил написать несколько маленьких статей-шпаргалок по переводом чисел в различные системы счислений, сетевым адресам, маскам и т.п. В это части пойдет речь о переводи чисел в различные системы счислений.

Когда вы занимаетесь чем-то связанным с компьютерными сетями и ИТ, вы по любому столкнетесь с этим понятием. И как толковый ИТ-шник вам нужно разбираться в этом хотя бы чу-чуть даже если на практике вы это будете применять очень редко.
Рассмотрим перевод каждой цифры из IP-адреса 98.251.16.138 в следующие системы счислений:

  • Двоичная
  • Восьмеричная
  • Десятичная
  • Шестнадцатеричная

1.1 Десятичная

Так как цифры записаны в десятичной, перевод с десятичной в десятичную пропустим

Источник: http://sysadm.pp.ua/internet/numeral-systems.html

Правила перевода чисел из десятичной системы счисления в другую

  • Для перевода числа из десятичной системы счисления в двоичную его необходимо последовательно делить на $2$ до тех пор, пока не останется остаток, меньший или равный $1$. Число в двоичной системе представить как последовательность последнего результата деления и остатков от деления в обратном порядке.

Пример 4

Число $22_{10}$ перевести в двоичную систему счисления.

Решение:

Рисунок 4.

$22_{10} = 10110_2$

  • Для перевода числа из десятичной системы счисления в восьмеричную его необходимо последовательно делить на $8$ до тех пор, пока не останется остаток, меньший или равный $7$. Число в восьмеричной системе счисления представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 5

Число $571_{10}$ перевести в восьмеричную систему счисления.

Решение:

Рисунок 5.

$571_{10} = 1073_8$

  • Для перевода числа из десятичной системы счисления в шестнадцатеричную систему его необходимо последовательно делить на $16$ до тех пор, пока не останется остаток, меньший или равный $15$. Число в шестнадцатеричной системе представить как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

Пример 6

Число $7467_{10}$ перевести в шестнадцатеричную систему счисления.

Решение:

Рисунок 6.

$7467_{10} = 1D2B_{16}$

  • Для того чтобы перевести правильную дробь из десятичной системы счисления в недесятичную, необходимо дробную часть преобразуемого числа последовательно умножить на основание той системы, в которую ее требуется перевести. Дробь в новой системе будет представлена в виде целых частей произведений, начиная с первого.

    Например: $0,3125_{(10)}$ в восьмеричной системе счисления будет выглядеть как $0,24_{(8)}$.

    В данном случае можно столкнуться с проблемой, когда конечной десятичной дроби может соответствовать бесконечная (периодическая) дробь в недесятичной системе счисления. В данном случае количество знаков в дроби, представленной в новой системе, будет зависеть от требуемой точности. Также нужно отметить, что целые числа остаются целыми, а правильные дроби — дробями в любой системе счисления.

Правила перевода чисел из двоичной системы счисления в другую

  • Чтобы перевести число из двоичной системы счисления в восьмеричную, его необходимо разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, затем каждую триаду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Рисунок 7. Таблица 4

Пример 7

Число $1001011_2$ перевести в восьмеричную систему счисления.

Решение. Используя таблицу 4, переведем число из двоичной системы счисления в восьмеричную:

$001 001 011_2 = 113_8$

  • Чтобы перевести число из двоичной системы счисления в шестнадцатеричную, его следует разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, затем каждую тетраду заменить соответствующей восьмеричной цифрой согласно таблице 4.

Пример 8

Число $1011100011_2$ перевести в шестнадцатеричную систему счисления.

Решение. Используя таблицу 4 переведем число из двоичной системы счисления в шестнадцатеричную:

$0010 1110 0011_2 = 2E3_{16}$

Правила перевода чисел из любой системы счисления в двоичную

  • Для перевода числа из восьмеричной системы счисления в двоичную следует каждую цифру заменить эквивалентной ей двоичной триадой, представленной в таблице 4.

Пример 9

Число $531_8$ перевести в двоичную систему счисления.Решение: $531_8 = 101011001_2$

  • Для перевода числа из шестнадцатеричной системы счисления в двоичную требуется каждую цифру заменить эквивалентной ей двоичной тетрадой, представленной в таблице 4.

Пример 10

Число $EE8_{16}$ перевести в двоичную систему счисления.

Решение:

$EE8_{16} = 111011101000_2$

  • При переводе числа из восьмеричной системы счисления в шестнадцатеричную и обратно, необходимо выполнить промежуточный перевод чисел в двоичную систему.

Пример 11

Число $FEA_{16}$ перевести в восьмеричную систему счисления.

Решение:

$FEA_{16} = 111111101010_2$

$111 111 101 010_2 = 7752_8$

Пример 12

Число $6635_8$ перевести в шестнадцатеричную систему счисления.

Решение:

$6635_8 = 110110011101_2$

$1101 1001 11012 = D9D_{16}$

Источник: https://spravochnick.ru/informatika/sistemy_schisleniya/perevod_chisel_iz_odnoy_sistemy_schisleniya_v_druguyu/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.